forked from geekcomputers/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIterative Merge Sort.py
84 lines (66 loc) · 1.79 KB
/
Iterative Merge Sort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Iterative Merge sort (Bottom Up)
# Iterative mergesort function to
# sort arr[0...n-1]
def mergeSort(a):
current_size = 1
# Outer loop for traversing Each
# sub array of current_size
while current_size < len(a) - 1:
left = 0
# Inner loop for merge call
# in a sub array
# Each complete Iteration sorts
# the iterating sub array
while left < len(a) - 1:
# mid index = left index of
# sub array + current sub
# array size - 1
mid = min((left + current_size - 1), (len(a) - 1))
# (False result,True result)
# [Condition] Can use current_size
# if 2 * current_size < len(a)-1
# else len(a)-1
right = (2 * current_size + left - 1, len(a) - 1)[
2 * current_size + left - 1 > len(a) - 1
]
# Merge call for each sub array
merge(a, left, mid, right)
left = left + current_size * 2
# Increasing sub array size by
# multiple of 2
current_size = 2 * current_size
# Merge Function
def merge(a, l, m, r):
n1 = m - l + 1
n2 = r - m
L = [0] * n1
R = [0] * n2
for i in range(0, n1):
L[i] = a[l + i]
for i in range(0, n2):
R[i] = a[m + i + 1]
i, j, k = 0, 0, l
while i < n1 and j < n2:
if L[i] > R[j]:
a[k] = R[j]
j += 1
else:
a[k] = L[i]
i += 1
k += 1
while i < n1:
a[k] = L[i]
i += 1
k += 1
while j < n2:
a[k] = R[j]
j += 1
k += 1
# Driver code
a = [12, 11, 13, 5, 6, 7]
print("Given array is ")
print(a)
mergeSort(a)
print("Sorted array is ")
print(a)
# This code is contributed by mohd-mehraj.