Skip to content

Commit 04f13da

Browse files
Merge pull request TheAlgorithms#66 from prateekiiest/master
Update Normal Distribution QuickSort Readme
2 parents bbd96ec + a484b47 commit 04f13da

File tree

2 files changed

+86
-0
lines changed

2 files changed

+86
-0
lines changed

README.md

+6
Original file line numberDiff line numberDiff line change
@@ -59,6 +59,12 @@ __Properties__
5959

6060
###### View the algorithm in [action][quick-toptal]
6161

62+
63+
64+
65+
![Normal Distribution QuickSort](https://github.com/prateekiiest/Python/blob/master/sorts/normal_distribution_QuickSort_README.md)
66+
67+
6268
### Selection
6369
![alt text][selection-image]
6470

Original file line numberDiff line numberDiff line change
@@ -0,0 +1,80 @@
1+
#Normal Distribution QuickSort
2+
3+
4+
Algorithm implementing QuickSort Algorithm where the pivot element is chosen randomly between first and last elements of the array and the array elements are taken from a Standard Normal Distribution.
5+
This is different from the ordinary quicksort in the sense, that it applies more to real life problems , where elements usually follow a normal distribution. Also the pivot is randomized to make it a more generic one.
6+
7+
8+
##Array Elements
9+
10+
The array elements are taken from a Standard Normal Distribution , having mean = 0 and standard deviation 1.
11+
12+
####The code
13+
14+
```python
15+
16+
>>> import numpy as np
17+
>>> from tempfile import TemporaryFile
18+
>>> outfile = TemporaryFile()
19+
>>> p = 100 # 100 elements are to be sorted
20+
>>> mu, sigma = 0, 1 # mean and standard deviation
21+
>>> X = np.random.normal(mu, sigma, p)
22+
>>> np.save(outfile, X)
23+
>>> print('The array is')
24+
>>> print(X)
25+
26+
```
27+
28+
------
29+
30+
#### The Distribution of the Array elements.
31+
32+
```python
33+
>>> mu, sigma = 0, 1 # mean and standard deviation
34+
>>> s = np.random.normal(mu, sigma, p)
35+
>>> count, bins, ignored = plt.hist(s, 30, normed=True)
36+
>>> plt.plot(bins , 1/(sigma * np.sqrt(2 * np.pi)) *np.exp( - (bins - mu)**2 / (2 * sigma**2) ),linewidth=2, color='r')
37+
>>> plt.show()
38+
39+
```
40+
41+
42+
![Array_Element_Distribution](https://github.com/prateekiiest/Algorithms/blob/master/normaldistributionforarrayelements.png)
43+
44+
45+
46+
47+
---
48+
49+
---------------------
50+
51+
--
52+
53+
##Plotting the function for Checking 'The Number of Comparisons' taking place between Normal Distribution QuickSort and Ordinary QuickSort
54+
55+
```python
56+
>>>import matplotlib.pyplot as plt
57+
58+
59+
# Normal Disrtibution QuickSort is red
60+
>>> plt.plot([1,2,4,16,32,64,128,256,512,1024,2048],[1,1,6,15,43,136,340,800,2156,6821,16325],linewidth=2, color='r')
61+
62+
#Ordinary QuickSort is green
63+
>>> plt.plot([1,2,4,16,32,64,128,256,512,1024,2048],[1,1,4,16,67,122,362,949,2131,5086,12866],linewidth=2, color='g')
64+
65+
>>> plt.show()
66+
67+
```
68+
69+
70+
----
71+
72+
###The Plot
73+
74+
* X axis denotes the number of elements to be sorted.
75+
* Y axis denotes the number of comparisons taking place
76+
77+
![Plot](https://github.com/prateekiiest/Algorithms/blob/master/normaldist.png)
78+
79+
80+
------------------

0 commit comments

Comments
 (0)