forked from langchain-ai/chat-langchain
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chain.py
236 lines (202 loc) · 7.92 KB
/
chain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import os
from operator import itemgetter
from typing import Dict, List, Optional, Sequence
import weaviate
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from langchain_community.chat_models.anthropic import ChatAnthropic
from langchain_community.chat_models.fireworks import ChatFireworks
from langchain_community.embeddings.voyageai import VoyageEmbeddings
from langchain_community.vectorstores.weaviate import Weaviate
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.language_models.base import BaseLanguageModel
from langchain_core.messages import AIMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import (ChatPromptTemplate, MessagesPlaceholder,
PromptTemplate)
from langchain_core.retrievers import BaseRetriever
from langchain_core.runnables import (ConfigurableField, Runnable,
RunnableBranch, RunnableLambda,
RunnableMap)
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langsmith import Client
from pydantic import BaseModel
from constants import WEAVIATE_DOCS_INDEX_NAME
RESPONSE_TEMPLATE = """\
You are an expert programmer and problem-solver, tasked with answering any question \
about Langchain.
Generate a comprehensive and informative answer of 80 words or less for the \
given question based solely on the provided search results (URL and content). You must \
only use information from the provided search results. Use an unbiased and \
journalistic tone. Combine search results together into a coherent answer. Do not \
repeat text. Cite search results using [${{number}}] notation. Only cite the most \
relevant results that answer the question accurately. Place these citations at the end \
of the sentence or paragraph that reference them - do not put them all at the end. If \
different results refer to different entities within the same name, write separate \
answers for each entity.
You should use bullet points in your answer for readability. Put citations where they apply
rather than putting them all at the end.
If there is nothing in the context relevant to the question at hand, just say "Hmm, \
I'm not sure." Don't try to make up an answer.
Anything between the following `context` html blocks is retrieved from a knowledge \
bank, not part of the conversation with the user.
<context>
{context}
<context/>
REMEMBER: If there is no relevant information within the context, just say "Hmm, I'm \
not sure." Don't try to make up an answer. Anything between the preceding 'context' \
html blocks is retrieved from a knowledge bank, not part of the conversation with the \
user.\
"""
REPHRASE_TEMPLATE = """\
Given the following conversation and a follow up question, rephrase the follow up \
question to be a standalone question.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone Question:"""
client = Client()
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
expose_headers=["*"],
)
WEAVIATE_URL = os.environ["WEAVIATE_URL"]
WEAVIATE_API_KEY = os.environ["WEAVIATE_API_KEY"]
class ChatRequest(BaseModel):
question: str
chat_history: Optional[List[Dict[str, str]]]
def get_embeddings_model() -> Embeddings:
if os.environ.get("VOYAGE_API_KEY") and os.environ.get("VOYAGE_AI_MODEL"):
return VoyageEmbeddings(model=os.environ["VOYAGE_AI_MODEL"])
return OpenAIEmbeddings(chunk_size=200)
def get_retriever() -> BaseRetriever:
weaviate_client = weaviate.Client(
url=WEAVIATE_URL,
auth_client_secret=weaviate.AuthApiKey(api_key=WEAVIATE_API_KEY),
)
weaviate_client = Weaviate(
client=weaviate_client,
index_name=WEAVIATE_DOCS_INDEX_NAME,
text_key="text",
embedding=get_embeddings_model(),
by_text=False,
attributes=["source", "title"],
)
return weaviate_client.as_retriever(search_kwargs=dict(k=6))
def create_retriever_chain(
llm: BaseLanguageModel, retriever: BaseRetriever
) -> Runnable:
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(REPHRASE_TEMPLATE)
condense_question_chain = (
CONDENSE_QUESTION_PROMPT | llm | StrOutputParser()
).with_config(
run_name="CondenseQuestion",
)
conversation_chain = condense_question_chain | retriever
return RunnableBranch(
(
RunnableLambda(lambda x: bool(x.get("chat_history"))).with_config(
run_name="HasChatHistoryCheck"
),
conversation_chain.with_config(run_name="RetrievalChainWithHistory"),
),
(
RunnableLambda(itemgetter("question")).with_config(
run_name="Itemgetter:question"
)
| retriever
).with_config(run_name="RetrievalChainWithNoHistory"),
).with_config(run_name="RouteDependingOnChatHistory")
def format_docs(docs: Sequence[Document]) -> str:
formatted_docs = []
for i, doc in enumerate(docs):
doc_string = f"<doc id='{i}'>{doc.page_content}</doc>"
formatted_docs.append(doc_string)
return "\n".join(formatted_docs)
def serialize_history(request: ChatRequest):
chat_history = request["chat_history"] or []
converted_chat_history = []
for message in chat_history:
if message.get("human") is not None:
converted_chat_history.append(HumanMessage(content=message["human"]))
if message.get("ai") is not None:
converted_chat_history.append(AIMessage(content=message["ai"]))
return converted_chat_history
def create_chain(
llm: BaseLanguageModel,
retriever: BaseRetriever,
) -> Runnable:
retriever_chain = create_retriever_chain(
llm,
retriever,
).with_config(run_name="FindDocs")
_context = RunnableMap(
{
"context": retriever_chain | format_docs,
"question": itemgetter("question"),
"chat_history": itemgetter("chat_history"),
}
).with_config(run_name="RetrieveDocs")
prompt = ChatPromptTemplate.from_messages(
[
("system", RESPONSE_TEMPLATE),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{question}"),
]
)
response_synthesizer = (prompt | llm | StrOutputParser()).with_config(
run_name="GenerateResponse",
)
return (
{
"question": RunnableLambda(itemgetter("question")).with_config(
run_name="Itemgetter:question"
),
"chat_history": RunnableLambda(serialize_history).with_config(
run_name="SerializeHistory"
),
}
| _context
| response_synthesizer
)
llm = ChatOpenAI(
model="gpt-3.5-turbo-16k",
streaming=True,
temperature=0,
).configurable_alternatives(
# This gives this field an id
# When configuring the end runnable, we can then use this id to configure this field
ConfigurableField(id="llm"),
default_key="openai_gpt_3_5_turbo",
anthropic_claude_2_1=ChatAnthropic(
model="claude-2.1",
max_tokens=16384,
temperature=0,
anthropic_api_key=os.environ.get("ANTHROPIC_API_KEY", "not_provided"),
),
fireworks_mixtral=ChatFireworks(
model="accounts/fireworks/models/mixtral-8x7b-instruct",
temperature=0,
max_tokens=16384,
fireworks_api_key=os.environ.get("FIREWORKS_API_KEY", "not_provided"),
),
google_gemini_pro=ChatGoogleGenerativeAI(
model="gemini-pro",
temperature=0,
convert_system_message_to_human=True,
max_tokens=16384,
google_api_key=os.environ.get("GOOGLE_API_KEY", "not_provided"),
),
)
retriever = get_retriever()
answer_chain = create_chain(
llm,
retriever,
)