forked from hrydgard/ppsspp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathControlMapper.cpp
766 lines (666 loc) · 22.8 KB
/
ControlMapper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
#include <algorithm>
#include <sstream>
#include "Common/Math/math_util.h"
#include "Common/TimeUtil.h"
#include "Common/StringUtils.h"
#include "Common/Log.h"
#include "Core/HLE/sceCtrl.h"
#include "Core/KeyMap.h"
#include "Core/ControlMapper.h"
#include "Core/Config.h"
#include "Core/CoreParameter.h"
#include "Core/System.h"
using KeyMap::MultiInputMapping;
const float AXIS_BIND_THRESHOLD = 0.75f;
const float AXIS_BIND_THRESHOLD_MOUSE = 0.01f;
// We reduce the threshold of some axes when another axis on the same stick is active.
// This makes it easier to hit diagonals if you bind an analog stick to four face buttons or D-Pad.
static InputAxis GetCoAxis(InputAxis axis) {
switch (axis) {
case JOYSTICK_AXIS_X: return JOYSTICK_AXIS_Y;
case JOYSTICK_AXIS_Y: return JOYSTICK_AXIS_X;
// This looks weird, but it's simply how XInput axes are mapped.
case JOYSTICK_AXIS_Z: return JOYSTICK_AXIS_RZ;
case JOYSTICK_AXIS_RZ: return JOYSTICK_AXIS_Z;
// Not sure if these two are used.
case JOYSTICK_AXIS_RX: return JOYSTICK_AXIS_RY;
case JOYSTICK_AXIS_RY: return JOYSTICK_AXIS_RX;
default:
return JOYSTICK_AXIS_MAX; // invalid
}
}
float ControlMapper::GetDeviceAxisThreshold(int device, const InputMapping &mapping) {
if (device == DEVICE_ID_MOUSE) {
return AXIS_BIND_THRESHOLD_MOUSE;
}
if (mapping.IsAxis()) {
switch (KeyMap::GetAxisType((InputAxis)mapping.Axis(nullptr))) {
case KeyMap::AxisType::TRIGGER:
return g_Config.fAnalogTriggerThreshold;
case KeyMap::AxisType::STICK:
{
// Co-axis processing, see GetCoAxes comment.
InputAxis axis = (InputAxis)mapping.Axis(nullptr);
InputAxis coAxis = GetCoAxis(axis);
if (coAxis != JOYSTICK_AXIS_MAX) {
float absCoValue = fabsf(rawAxisValue_[(int)coAxis]);
if (absCoValue > 0.0f) {
// Bias down the threshold if the other axis is active.
float biasedThreshold = AXIS_BIND_THRESHOLD * (1.0f - absCoValue * 0.35f);
// INFO_LOG(SYSTEM, "coValue: %f threshold: %f", absCoValue, biasedThreshold);
return biasedThreshold;
}
}
break;
}
default:
break;
}
}
return AXIS_BIND_THRESHOLD;
}
static int GetOppositeVKey(int vkey) {
switch (vkey) {
case VIRTKEY_AXIS_X_MIN: return VIRTKEY_AXIS_X_MAX; break;
case VIRTKEY_AXIS_X_MAX: return VIRTKEY_AXIS_X_MIN; break;
case VIRTKEY_AXIS_Y_MIN: return VIRTKEY_AXIS_Y_MAX; break;
case VIRTKEY_AXIS_Y_MAX: return VIRTKEY_AXIS_Y_MIN; break;
case VIRTKEY_AXIS_RIGHT_X_MIN: return VIRTKEY_AXIS_RIGHT_X_MAX; break;
case VIRTKEY_AXIS_RIGHT_X_MAX: return VIRTKEY_AXIS_RIGHT_X_MIN; break;
case VIRTKEY_AXIS_RIGHT_Y_MIN: return VIRTKEY_AXIS_RIGHT_Y_MAX; break;
case VIRTKEY_AXIS_RIGHT_Y_MAX: return VIRTKEY_AXIS_RIGHT_Y_MIN; break;
default:
return 0;
}
}
static bool IsAxisVKey(int vkey) {
// Little hacky but works, of course.
return GetOppositeVKey(vkey) != 0;
}
static bool IsUnsignedMapping(int vkey) {
return vkey == VIRTKEY_SPEED_ANALOG;
}
static bool IsSignedAxis(int axis) {
switch (axis) {
case JOYSTICK_AXIS_X:
case JOYSTICK_AXIS_Y:
case JOYSTICK_AXIS_Z:
case JOYSTICK_AXIS_RX:
case JOYSTICK_AXIS_RY:
case JOYSTICK_AXIS_RZ:
return true;
default:
return false;
}
}
// This is applied on the circular radius, not directly on the axes.
// TODO: Share logic with tilt?
static float MapAxisValue(float v) {
const float deadzone = g_Config.fAnalogDeadzone;
const float invDeadzone = g_Config.fAnalogInverseDeadzone;
const float sensitivity = g_Config.fAnalogSensitivity;
const float sign = v >= 0.0f ? 1.0f : -1.0f;
// Apply deadzone.
v = Clamp((fabsf(v) - deadzone) / (1.0f - deadzone), 0.0f, 1.0f);
// Apply sensitivity and inverse deadzone.
if (v != 0.0f) {
v = Clamp(invDeadzone + v * (sensitivity - invDeadzone), 0.0f, 1.0f);
}
return sign * v;
}
void ConvertAnalogStick(float x, float y, float *outX, float *outY) {
const bool isCircular = g_Config.bAnalogIsCircular;
float norm = std::max(fabsf(x), fabsf(y));
if (norm == 0.0f) {
*outX = x;
*outY = y;
return;
}
if (isCircular) {
float newNorm = sqrtf(x * x + y * y);
float factor = newNorm / norm;
x *= factor;
y *= factor;
norm = newNorm;
}
float mappedNorm = MapAxisValue(norm);
*outX = Clamp(x / norm * mappedNorm, -1.0f, 1.0f);
*outY = Clamp(y / norm * mappedNorm, -1.0f, 1.0f);
}
void ControlMapper::SetCallbacks(
std::function<void(int, bool)> onVKey,
std::function<void(int, float)> onVKeyAnalog,
std::function<void(uint32_t, uint32_t)> updatePSPButtons,
std::function<void(int, float, float)> setPSPAnalog,
std::function<void(int, float, float)> setRawAnalog) {
onVKey_ = onVKey;
onVKeyAnalog_ = onVKeyAnalog;
updatePSPButtons_ = updatePSPButtons;
setPSPAnalog_ = setPSPAnalog;
setRawAnalog_ = setRawAnalog;
}
void ControlMapper::SetPSPAxis(int device, int stick, char axis, float value) {
int axisId = axis == 'X' ? 0 : 1;
float position[2];
position[0] = history_[stick][0];
position[1] = history_[stick][1];
position[axisId] = value;
float x = position[0];
float y = position[1];
if (setRawAnalog_) {
setRawAnalog_(stick, x, y);
}
// NOTE: We need to use single-axis checks, since the other axis might be from another device,
// so we'll add a little leeway.
bool inDeadZone = fabsf(value) < g_Config.fAnalogDeadzone * 0.7f;
bool ignore = false;
if (inDeadZone && lastNonDeadzoneDeviceID_[stick] != device) {
// Ignore this event! See issue #15465
ignore = true;
}
if (!inDeadZone) {
lastNonDeadzoneDeviceID_[stick] = device;
}
if (!ignore) {
history_[stick][axisId] = value;
UpdateAnalogOutput(stick);
}
}
void ControlMapper::UpdateAnalogOutput(int stick) {
float x, y;
ConvertAnalogStick(history_[stick][0], history_[stick][1], &x, &y);
if (virtKeyOn_[VIRTKEY_ANALOG_LIGHTLY - VIRTKEY_FIRST]) {
x *= g_Config.fAnalogLimiterDeadzone;
y *= g_Config.fAnalogLimiterDeadzone;
}
converted_[stick][0] = x;
converted_[stick][1] = y;
setPSPAnalog_(stick, x, y);
}
void ControlMapper::ForceReleaseVKey(int vkey) {
// Note: This one is called from an onVKey_ handler, which already holds mutex_.
KeyMap::LockMappings();
std::vector<KeyMap::MultiInputMapping> multiMappings;
if (KeyMap::InputMappingsFromPspButtonNoLock(vkey, &multiMappings, true)) {
double now = time_now_d();
for (const auto &entry : multiMappings) {
for (const auto &mapping : entry.mappings) {
curInput_[mapping] = { 0.0f, now };
// Different logic for signed axes?
UpdatePSPState(mapping, now);
}
}
}
KeyMap::UnlockMappings();
}
void ControlMapper::ReleaseAll() {
std::vector<AxisInput> axes;
std::vector<KeyInput> keys;
{
std::lock_guard<std::mutex> guard(mutex_);
for (const auto &input : curInput_) {
if (input.first.IsAxis()) {
if (input.second.value != 0.0f) {
AxisInput axis;
axis.deviceId = input.first.deviceId;
int dir;
axis.axisId = (InputAxis)input.first.Axis(&dir);
axis.value = 0.0;
axes.push_back(axis);
}
} else {
if (input.second.value != 0.0) {
KeyInput key;
key.deviceId = input.first.deviceId;
key.flags = KEY_UP;
key.keyCode = (InputKeyCode)input.first.keyCode;
keys.push_back(key);
}
}
}
}
Axis(axes.data(), axes.size());;
for (const auto &key : keys) {
Key(key, nullptr);
}
}
static int RotatePSPKeyCode(int x) {
switch (x) {
case CTRL_UP: return CTRL_RIGHT;
case CTRL_RIGHT: return CTRL_DOWN;
case CTRL_DOWN: return CTRL_LEFT;
case CTRL_LEFT: return CTRL_UP;
default:
return x;
}
}
// Used to decay analog values when clashing with digital ones.
static ControlMapper::InputSample ReduceMagnitude(ControlMapper::InputSample sample, double now) {
float reduction = std::min(std::max(0.0f, (float)(now - sample.timestamp) - 2.0f), 1.0f);
if (reduction > 0.0f) {
sample.value *= (1.0f - reduction);
}
if ((sample.value > 0.0f && sample.value < 0.05f) || (sample.value < 0.0f && sample.value > -0.05f)) {
sample.value = 0.0f;
}
return sample;
}
float ControlMapper::MapAxisValue(float value, int vkId, const InputMapping &mapping, const InputMapping &changedMapping, bool *oppositeTouched) {
if (IsUnsignedMapping(vkId)) {
// If a signed axis is mapped to an unsigned mapping,
// convert it. This happens when mapping DirectInput triggers to analog speed,
// for example.
int direction;
if (IsSignedAxis(mapping.Axis(&direction))) {
// The value has been split up into two curInput values, so we need to go fetch the other
// and put them back together again. Kind of awkward, but at least makes the regular case simple...
InputMapping other = mapping.FlipDirection();
if (other == changedMapping) {
*oppositeTouched = true;
}
float valueOther = curInput_[other].value;
float signedValue = value - valueOther;
float ranged = (signedValue + 1.0f) * 0.5f;
if (direction == -1) {
ranged = 1.0f - ranged;
}
// NOTICE_LOG(SYSTEM, "rawValue: %f other: %f signed: %f ranged: %f", iter->second, valueOther, signedValue, ranged);
return ranged;
} else {
return value;
}
} else {
return value;
}
}
static bool IsSwappableVKey(uint32_t vkey) {
switch (vkey) {
case CTRL_UP:
case CTRL_LEFT:
case CTRL_DOWN:
case CTRL_RIGHT:
case VIRTKEY_AXIS_X_MIN:
case VIRTKEY_AXIS_X_MAX:
case VIRTKEY_AXIS_Y_MIN:
case VIRTKEY_AXIS_Y_MAX:
return true;
default:
return false;
}
}
void ControlMapper::SwapMappingIfEnabled(uint32_t *vkey) {
if (swapAxes_) {
switch (*vkey) {
case CTRL_UP: *vkey = VIRTKEY_AXIS_Y_MAX; break;
case VIRTKEY_AXIS_Y_MAX: *vkey = CTRL_UP; break;
case CTRL_DOWN: *vkey = VIRTKEY_AXIS_Y_MIN; break;
case VIRTKEY_AXIS_Y_MIN: *vkey = CTRL_DOWN; break;
case CTRL_LEFT: *vkey = VIRTKEY_AXIS_X_MIN; break;
case VIRTKEY_AXIS_X_MIN: *vkey = CTRL_LEFT; break;
case CTRL_RIGHT: *vkey = VIRTKEY_AXIS_X_MAX; break;
case VIRTKEY_AXIS_X_MAX: *vkey = CTRL_RIGHT; break;
}
}
}
// Can only be called from Key or Axis.
// mutex_ should be locked, and also KeyMap::LockMappings().
// TODO: We should probably make a batched version of this.
bool ControlMapper::UpdatePSPState(const InputMapping &changedMapping, double now) {
// Instead of taking an input key and finding what it outputs, we loop through the OUTPUTS and
// see if the input that corresponds to it has a value. That way we can easily implement all sorts
// of crazy input combos if needed.
int rotations = 0;
switch (g_Config.iInternalScreenRotation) {
case ROTATION_LOCKED_HORIZONTAL180: rotations = 2; break;
case ROTATION_LOCKED_VERTICAL: rotations = 1; break;
case ROTATION_LOCKED_VERTICAL180: rotations = 3; break;
}
// For the PSP's digital button inputs, we just go through and put the flags together.
uint32_t buttonMask = 0;
uint32_t changedButtonMask = 0;
std::vector<MultiInputMapping> inputMappings;
for (int i = 0; i < 32; i++) {
uint32_t mask = 1 << i;
if (!(mask & CTRL_MASK_USER)) {
// Not a mappable button bit
continue;
}
uint32_t mappingBit = mask;
for (int i = 0; i < rotations; i++) {
mappingBit = RotatePSPKeyCode(mappingBit);
}
SwapMappingIfEnabled(&mappingBit);
if (!KeyMap::InputMappingsFromPspButtonNoLock(mappingBit, &inputMappings, false))
continue;
// If a mapping could consist of a combo, we could trivially check it here.
for (auto &multiMapping : inputMappings) {
// Check if the changed mapping was involved in this PSP key.
if (multiMapping.mappings.contains(changedMapping)) {
changedButtonMask |= mask;
}
// Check if all inputs are "on".
bool all = true;
double curTime = 0.0;
for (auto mapping : multiMapping.mappings) {
auto iter = curInput_.find(mapping);
if (iter == curInput_.end()) {
all = false;
continue;
}
// Stop reverse ordering from triggering.
if (g_Config.bStrictComboOrder && iter->second.timestamp < curTime) {
all = false;
break;
} else {
curTime = iter->second.timestamp;
}
bool down = iter->second.value > 0.0f && iter->second.value > GetDeviceAxisThreshold(iter->first.deviceId, mapping);
if (!down)
all = false;
}
if (all) {
buttonMask |= mask;
}
}
}
// We only request changing the buttons where the mapped input was involved.
updatePSPButtons_(buttonMask & changedButtonMask, (~buttonMask) & changedButtonMask);
bool keyInputUsed = changedButtonMask != 0;
bool updateAnalogSticks = false;
// OK, handle all the virtual keys next. For these we need to do deltas here and send events.
// Note that virtual keys include the analog directions, as they are driven by them.
for (int i = 0; i < VIRTKEY_COUNT; i++) {
int vkId = i + VIRTKEY_FIRST;
uint32_t idForMapping = vkId;
SwapMappingIfEnabled(&idForMapping);
if (!KeyMap::InputMappingsFromPspButtonNoLock(idForMapping, &inputMappings, false))
continue;
// If a mapping could consist of a combo, we could trivially check it here.
// Save the first device ID so we can pass it into onVKeyDown, which in turn needs it for the analog
// mapping which gets a little hacky.
float threshold = 1.0f;
bool touchedByMapping = false;
float value = 0.0f;
for (auto &multiMapping : inputMappings) {
if (multiMapping.mappings.contains(changedMapping)) {
touchedByMapping = true;
}
float product = 1.0f; // We multiply the various inputs in a combo mapping with each other.
double curTime = 0.0;
for (auto mapping : multiMapping.mappings) {
auto iter = curInput_.find(mapping);
if (iter != curInput_.end()) {
// Stop reverse ordering from triggering.
if (g_Config.bStrictComboOrder && iter->second.timestamp < curTime) {
product = 0.0f;
break;
} else {
curTime = iter->second.timestamp;
}
if (mapping.IsAxis()) {
threshold = GetDeviceAxisThreshold(iter->first.deviceId, mapping);
float value = MapAxisValue(iter->second.value, idForMapping, mapping, changedMapping, &touchedByMapping);
product *= value;
} else {
product *= iter->second.value;
}
} else {
product = 0.0f;
}
}
value += product;
}
if (!touchedByMapping) {
continue;
}
keyInputUsed = true;
// Small values from analog inputs like gamepad sticks can linger around, which is bad here because we sum
// up before applying deadzone etc. This means that it can be impossible to reach the min/max values with digital input!
// So if non-analog events clash with analog ones mapped to the same input, decay the analog input,
// which will quickly get things back to normal, while if it's intentional to use both at the same time for some reason,
// that still works, though a bit weaker. We could also zero here, but you never know who relies on such strange tricks..
// Note: This is an old problem, it didn't appear with the refactoring.
if (!changedMapping.IsAxis()) {
for (auto &multiMapping : inputMappings) {
for (auto &mapping : multiMapping.mappings) {
if (mapping != changedMapping && curInput_[mapping].value > 0.0f) {
// Note that this takes the time into account now - values will
// decay after a while, not immediately.
curInput_[mapping] = ReduceMagnitude(curInput_[mapping], now);
}
}
}
}
value = clamp_value(value, 0.0f, 1.0f);
// Derive bools from the floats using the device's threshold.
// NOTE: This must be before the equality check below.
bool bPrevValue = virtKeys_[i] >= threshold;
bool bValue = value >= threshold;
if (virtKeys_[i] != value) {
// INFO_LOG(G3D, "vkeyanalog %s : %f", KeyMap::GetVirtKeyName(vkId), value);
onVKeyAnalog(changedMapping.deviceId, vkId, value);
virtKeys_[i] = value;
}
if (!bPrevValue && bValue) {
// INFO_LOG(G3D, "vkeyon %s", KeyMap::GetVirtKeyName(vkId));
onVKey(vkId, true);
virtKeyOn_[vkId - VIRTKEY_FIRST] = true;
if (vkId == VIRTKEY_ANALOG_LIGHTLY) {
updateAnalogSticks = true;
}
} else if (bPrevValue && !bValue) {
// INFO_LOG(G3D, "vkeyoff %s", KeyMap::GetVirtKeyName(vkId));
onVKey(vkId, false);
virtKeyOn_[vkId - VIRTKEY_FIRST] = false;
if (vkId == VIRTKEY_ANALOG_LIGHTLY) {
updateAnalogSticks = true;
}
}
}
if (updateAnalogSticks) {
// If "lightly" (analog limiter) was toggled, we need to update both computed stick outputs.
UpdateAnalogOutput(0);
UpdateAnalogOutput(1);
}
return keyInputUsed;
}
bool ControlMapper::Key(const KeyInput &key, bool *pauseTrigger) {
if (key.flags & KEY_IS_REPEAT) {
// Claim that we handled this. Prevents volume key repeats from popping up the volume control on Android.
return true;
}
double now = time_now_d();
InputMapping mapping(key.deviceId, key.keyCode);
std::lock_guard<std::mutex> guard(mutex_);
if (key.deviceId < DEVICE_ID_COUNT) {
deviceTimestamps_[(int)key.deviceId] = now;
}
if (key.flags & KEY_DOWN) {
curInput_[mapping] = { 1.0f, now };
} else if (key.flags & KEY_UP) {
curInput_[mapping] = { 0.0f, now};
}
// TODO: See if this can be simplified further somehow.
if ((key.flags & KEY_DOWN) && key.keyCode == NKCODE_BACK) {
bool mappingFound = KeyMap::InputMappingToPspButton(mapping, nullptr);
DEBUG_LOG(SYSTEM, "Key: %d DeviceId: %d", key.keyCode, key.deviceId);
if (!mappingFound || key.deviceId == DEVICE_ID_DEFAULT) {
*pauseTrigger = true;
return true;
}
}
KeyMap::LockMappings();
bool retval = UpdatePSPState(mapping, now);
KeyMap::UnlockMappings();
return retval;
}
void ControlMapper::ToggleSwapAxes() {
std::lock_guard<std::mutex> guard(mutex_);
swapAxes_ = !swapAxes_;
updatePSPButtons_(0, CTRL_LEFT | CTRL_RIGHT | CTRL_UP | CTRL_DOWN);
for (uint32_t vkey = VIRTKEY_FIRST; vkey < VIRTKEY_LAST; vkey++) {
if (IsSwappableVKey(vkey)) {
if (virtKeyOn_[vkey - VIRTKEY_FIRST]) {
onVKey_(vkey, false);
virtKeyOn_[vkey - VIRTKEY_FIRST] = false;
}
if (virtKeys_[vkey - VIRTKEY_FIRST] > 0.0f) {
onVKeyAnalog_(vkey, 0.0f);
virtKeys_[vkey - VIRTKEY_FIRST] = 0.0f;
}
}
}
history_[0][0] = 0.0f;
history_[0][1] = 0.0f;
UpdateAnalogOutput(0);
UpdateAnalogOutput(1);
}
void ControlMapper::UpdateCurInputAxis(const InputMapping &mapping, float value, double timestamp) {
InputSample &input = curInput_[mapping];
input.value = value;
if (value >= GetDeviceAxisThreshold(mapping.deviceId, mapping)) {
if (input.timestamp == 0.0) {
input.timestamp = time_now_d();
}
} else {
input.timestamp = 0.0;
}
}
void ControlMapper::Axis(const AxisInput *axes, size_t count) {
double now = time_now_d();
std::lock_guard<std::mutex> guard(mutex_);
KeyMap::LockMappings();
for (size_t i = 0; i < count; i++) {
const AxisInput &axis = axes[i];
if (axis.deviceId == DEVICE_ID_MOUSE && !g_Config.bMouseControl) {
continue;
}
size_t deviceIndex = (size_t)axis.deviceId; // this wraps -1 up high, so will get rejected on the next line.
if (deviceIndex < (size_t)DEVICE_ID_COUNT) {
deviceTimestamps_[deviceIndex] = now;
}
rawAxisValue_[axis.axisId] = axis.value; // these are only used for co-axis mapping
if (axis.value >= 0.0f) {
InputMapping mapping(axis.deviceId, axis.axisId, 1);
InputMapping opposite(axis.deviceId, axis.axisId, -1);
UpdateCurInputAxis(mapping, axis.value, now);
UpdateCurInputAxis(opposite, 0.0f, now);
UpdatePSPState(mapping, now);
UpdatePSPState(opposite, now);
} else if (axis.value < 0.0f) {
InputMapping mapping(axis.deviceId, axis.axisId, -1);
InputMapping opposite(axis.deviceId, axis.axisId, 1);
UpdateCurInputAxis(mapping, -axis.value, now);
UpdateCurInputAxis(opposite, 0.0f, now);
UpdatePSPState(mapping, now);
UpdatePSPState(opposite, now);
}
}
KeyMap::UnlockMappings();
}
void ControlMapper::Update(double now) {
if (autoRotatingAnalogCW_) {
// Clamp to a square
float x = std::min(1.0f, std::max(-1.0f, 1.42f * (float)cos(now * -g_Config.fAnalogAutoRotSpeed)));
float y = std::min(1.0f, std::max(-1.0f, 1.42f * (float)sin(now * -g_Config.fAnalogAutoRotSpeed)));
setPSPAnalog_(0, x, y);
} else if (autoRotatingAnalogCCW_) {
float x = std::min(1.0f, std::max(-1.0f, 1.42f * (float)cos(now * g_Config.fAnalogAutoRotSpeed)));
float y = std::min(1.0f, std::max(-1.0f, 1.42f * (float)sin(now * g_Config.fAnalogAutoRotSpeed)));
setPSPAnalog_(0, x, y);
}
}
void ControlMapper::PSPKey(int deviceId, int pspKeyCode, int flags) {
std::lock_guard<std::mutex> guard(mutex_);
if (pspKeyCode >= VIRTKEY_FIRST) {
int vk = pspKeyCode - VIRTKEY_FIRST;
if (flags & KEY_DOWN) {
virtKeys_[vk] = 1.0f;
onVKey(pspKeyCode, true);
onVKeyAnalog(deviceId, pspKeyCode, 1.0f);
}
if (flags & KEY_UP) {
virtKeys_[vk] = 0.0f;
onVKey(pspKeyCode, false);
onVKeyAnalog(deviceId, pspKeyCode, 0.0f);
}
} else {
// INFO_LOG(SYSTEM, "pspKey %d %d", pspKeyCode, flags);
if (flags & KEY_DOWN)
updatePSPButtons_(pspKeyCode, 0);
if (flags & KEY_UP)
updatePSPButtons_(0, pspKeyCode);
}
}
void ControlMapper::onVKeyAnalog(int deviceId, int vkey, float value) {
// Unfortunately, for digital->analog inputs to work sanely, we need to sum up
// with the opposite value too.
int stick = 0;
int axis = 'X';
int oppositeVKey = GetOppositeVKey(vkey);
float sign = 1.0f;
switch (vkey) {
case VIRTKEY_AXIS_X_MIN: sign = -1.0f; break;
case VIRTKEY_AXIS_X_MAX: break;
case VIRTKEY_AXIS_Y_MIN: axis = 'Y'; sign = -1.0f; break;
case VIRTKEY_AXIS_Y_MAX: axis = 'Y'; break;
case VIRTKEY_AXIS_RIGHT_X_MIN: stick = CTRL_STICK_RIGHT; sign = -1.0f; break;
case VIRTKEY_AXIS_RIGHT_X_MAX: stick = CTRL_STICK_RIGHT; break;
case VIRTKEY_AXIS_RIGHT_Y_MIN: stick = CTRL_STICK_RIGHT; axis = 'Y'; sign = -1.0f; break;
case VIRTKEY_AXIS_RIGHT_Y_MAX: stick = CTRL_STICK_RIGHT; axis = 'Y'; break;
default:
if (onVKeyAnalog_)
onVKeyAnalog_(vkey, value);
return;
}
if (oppositeVKey != 0) {
float oppVal = virtKeys_[oppositeVKey - VIRTKEY_FIRST];
if (oppVal != 0.0f) {
value -= oppVal;
// NOTICE_LOG(SCECTRL, "Reducing %f by %f (from %08x : %s)", value, oppVal, oppositeVKey, KeyMap::GetPspButtonName(oppositeVKey).c_str());
}
}
SetPSPAxis(deviceId, stick, axis, sign * value);
}
void ControlMapper::onVKey(int vkey, bool down) {
switch (vkey) {
case VIRTKEY_ANALOG_ROTATE_CW:
if (down) {
autoRotatingAnalogCW_ = true;
autoRotatingAnalogCCW_ = false;
} else {
autoRotatingAnalogCW_ = false;
setPSPAnalog_(0, 0.0f, 0.0f);
}
break;
case VIRTKEY_ANALOG_ROTATE_CCW:
if (down) {
autoRotatingAnalogCW_ = false;
autoRotatingAnalogCCW_ = true;
} else {
autoRotatingAnalogCCW_ = false;
setPSPAnalog_(0, 0.0f, 0.0f);
}
break;
default:
if (onVKey_)
onVKey_(vkey, down);
break;
}
}
void ControlMapper::GetDebugString(char *buffer, size_t bufSize) const {
std::stringstream str;
for (auto iter : curInput_) {
char temp[256];
iter.first.FormatDebug(temp, sizeof(temp));
str << temp << ": " << iter.second.value << std::endl;
}
for (int i = 0; i < ARRAY_SIZE(virtKeys_); i++) {
int vkId = VIRTKEY_FIRST + i;
if ((vkId >= VIRTKEY_AXIS_X_MIN && vkId <= VIRTKEY_AXIS_Y_MAX) || vkId == VIRTKEY_ANALOG_LIGHTLY || vkId == VIRTKEY_SPEED_ANALOG) {
str << KeyMap::GetPspButtonName(vkId) << ": " << virtKeys_[i] << std::endl;
}
}
str << "Lstick: " << converted_[0][0] << ", " << converted_[0][1] << std::endl;
truncate_cpy(buffer, bufSize, str.str().c_str());
}