forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaccumulators.py
248 lines (205 loc) · 7.66 KB
/
accumulators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
>>> from pyspark.context import SparkContext
>>> sc = SparkContext('local', 'test')
>>> a = sc.accumulator(1)
>>> a.value
1
>>> a.value = 2
>>> a.value
2
>>> a += 5
>>> a.value
7
>>> sc.accumulator(1.0).value
1.0
>>> sc.accumulator(1j).value
1j
>>> rdd = sc.parallelize([1,2,3])
>>> def f(x):
... global a
... a += x
>>> rdd.foreach(f)
>>> a.value
13
>>> b = sc.accumulator(0)
>>> def g(x):
... b.add(x)
>>> rdd.foreach(g)
>>> b.value
6
>>> from pyspark.accumulators import AccumulatorParam
>>> class VectorAccumulatorParam(AccumulatorParam):
... def zero(self, value):
... return [0.0] * len(value)
... def addInPlace(self, val1, val2):
... for i in xrange(len(val1)):
... val1[i] += val2[i]
... return val1
>>> va = sc.accumulator([1.0, 2.0, 3.0], VectorAccumulatorParam())
>>> va.value
[1.0, 2.0, 3.0]
>>> def g(x):
... global va
... va += [x] * 3
>>> rdd.foreach(g)
>>> va.value
[7.0, 8.0, 9.0]
>>> rdd.map(lambda x: a.value).collect() # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
Py4JJavaError:...
>>> def h(x):
... global a
... a.value = 7
>>> rdd.foreach(h) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
Py4JJavaError:...
>>> sc.accumulator([1.0, 2.0, 3.0]) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
Exception:...
"""
import select
import struct
import SocketServer
import threading
from pyspark.cloudpickle import CloudPickler
from pyspark.serializers import read_int, PickleSerializer
pickleSer = PickleSerializer()
# Holds accumulators registered on the current machine, keyed by ID. This is then used to send
# the local accumulator updates back to the driver program at the end of a task.
_accumulatorRegistry = {}
def _deserialize_accumulator(aid, zero_value, accum_param):
from pyspark.accumulators import _accumulatorRegistry
accum = Accumulator(aid, zero_value, accum_param)
accum._deserialized = True
_accumulatorRegistry[aid] = accum
return accum
class Accumulator(object):
"""
A shared variable that can be accumulated, i.e., has a commutative and associative "add"
operation. Worker tasks on a Spark cluster can add values to an Accumulator with the C{+=}
operator, but only the driver program is allowed to access its value, using C{value}.
Updates from the workers get propagated automatically to the driver program.
While C{SparkContext} supports accumulators for primitive data types like C{int} and
C{float}, users can also define accumulators for custom types by providing a custom
L{AccumulatorParam} object. Refer to the doctest of this module for an example.
"""
def __init__(self, aid, value, accum_param):
"""Create a new Accumulator with a given initial value and AccumulatorParam object"""
from pyspark.accumulators import _accumulatorRegistry
self.aid = aid
self.accum_param = accum_param
self._value = value
self._deserialized = False
_accumulatorRegistry[aid] = self
def __reduce__(self):
"""Custom serialization; saves the zero value from our AccumulatorParam"""
param = self.accum_param
return (_deserialize_accumulator, (self.aid, param.zero(self._value), param))
@property
def value(self):
"""Get the accumulator's value; only usable in driver program"""
if self._deserialized:
raise Exception("Accumulator.value cannot be accessed inside tasks")
return self._value
@value.setter
def value(self, value):
"""Sets the accumulator's value; only usable in driver program"""
if self._deserialized:
raise Exception("Accumulator.value cannot be accessed inside tasks")
self._value = value
def add(self, term):
"""Adds a term to this accumulator's value"""
self._value = self.accum_param.addInPlace(self._value, term)
def __iadd__(self, term):
"""The += operator; adds a term to this accumulator's value"""
self.add(term)
return self
def __str__(self):
return str(self._value)
def __repr__(self):
return "Accumulator<id=%i, value=%s>" % (self.aid, self._value)
class AccumulatorParam(object):
"""
Helper object that defines how to accumulate values of a given type.
"""
def zero(self, value):
"""
Provide a "zero value" for the type, compatible in dimensions with the
provided C{value} (e.g., a zero vector)
"""
raise NotImplementedError
def addInPlace(self, value1, value2):
"""
Add two values of the accumulator's data type, returning a new value;
for efficiency, can also update C{value1} in place and return it.
"""
raise NotImplementedError
class AddingAccumulatorParam(AccumulatorParam):
"""
An AccumulatorParam that uses the + operators to add values. Designed for simple types
such as integers, floats, and lists. Requires the zero value for the underlying type
as a parameter.
"""
def __init__(self, zero_value):
self.zero_value = zero_value
def zero(self, value):
return self.zero_value
def addInPlace(self, value1, value2):
value1 += value2
return value1
# Singleton accumulator params for some standard types
INT_ACCUMULATOR_PARAM = AddingAccumulatorParam(0)
FLOAT_ACCUMULATOR_PARAM = AddingAccumulatorParam(0.0)
COMPLEX_ACCUMULATOR_PARAM = AddingAccumulatorParam(0.0j)
class _UpdateRequestHandler(SocketServer.StreamRequestHandler):
"""
This handler will keep polling updates from the same socket until the
server is shutdown.
"""
def handle(self):
from pyspark.accumulators import _accumulatorRegistry
while not self.server.server_shutdown:
# Poll every 1 second for new data -- don't block in case of shutdown.
r, _, _ = select.select([self.rfile], [], [], 1)
if self.rfile in r:
num_updates = read_int(self.rfile)
for _ in range(num_updates):
(aid, update) = pickleSer._read_with_length(self.rfile)
_accumulatorRegistry[aid] += update
# Write a byte in acknowledgement
self.wfile.write(struct.pack("!b", 1))
class AccumulatorServer(SocketServer.TCPServer):
"""
A simple TCP server that intercepts shutdown() in order to interrupt
our continuous polling on the handler.
"""
server_shutdown = False
def shutdown(self):
self.server_shutdown = True
SocketServer.TCPServer.shutdown(self)
def _start_update_server():
"""Start a TCP server to receive accumulator updates in a daemon thread, and returns it"""
server = AccumulatorServer(("localhost", 0), _UpdateRequestHandler)
thread = threading.Thread(target=server.serve_forever)
thread.daemon = True
thread.start()
return server