forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecommendation.py
89 lines (74 loc) · 3.19 KB
/
recommendation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from pyspark import SparkContext
from pyspark.mllib._common import \
_get_unmangled_rdd, _get_unmangled_double_vector_rdd, \
_serialize_double_matrix, _deserialize_double_matrix, \
_serialize_double_vector, _deserialize_double_vector, \
_get_initial_weights, _serialize_rating, _regression_train_wrapper, \
_serialize_tuple, RatingDeserializer
from pyspark.rdd import RDD
class MatrixFactorizationModel(object):
"""A matrix factorisation model trained by regularized alternating
least-squares.
>>> r1 = (1, 1, 1.0)
>>> r2 = (1, 2, 2.0)
>>> r3 = (2, 1, 2.0)
>>> ratings = sc.parallelize([r1, r2, r3])
>>> model = ALS.trainImplicit(ratings, 1)
>>> model.predict(2,2) is not None
True
>>> testset = sc.parallelize([(1, 2), (1, 1)])
>>> model.predictAll(testset).count() == 2
True
"""
def __init__(self, sc, java_model):
self._context = sc
self._java_model = java_model
def __del__(self):
self._context._gateway.detach(self._java_model)
def predict(self, user, product):
return self._java_model.predict(user, product)
def predictAll(self, usersProducts):
usersProductsJRDD = _get_unmangled_rdd(usersProducts, _serialize_tuple)
return RDD(self._java_model.predict(usersProductsJRDD._jrdd),
self._context, RatingDeserializer())
class ALS(object):
@classmethod
def train(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1):
sc = ratings.context
ratingBytes = _get_unmangled_rdd(ratings, _serialize_rating)
mod = sc._jvm.PythonMLLibAPI().trainALSModel(
ratingBytes._jrdd, rank, iterations, lambda_, blocks)
return MatrixFactorizationModel(sc, mod)
@classmethod
def trainImplicit(cls, ratings, rank, iterations=5, lambda_=0.01, blocks=-1, alpha=0.01):
sc = ratings.context
ratingBytes = _get_unmangled_rdd(ratings, _serialize_rating)
mod = sc._jvm.PythonMLLibAPI().trainImplicitALSModel(
ratingBytes._jrdd, rank, iterations, lambda_, blocks, alpha)
return MatrixFactorizationModel(sc, mod)
def _test():
import doctest
globs = globals().copy()
globs['sc'] = SparkContext('local[4]', 'PythonTest', batchSize=2)
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
exit(-1)
if __name__ == "__main__":
_test()