forked from apache/spark
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrdd.py
1835 lines (1554 loc) · 67.8 KB
/
rdd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from base64 import standard_b64encode as b64enc
import copy
from collections import defaultdict
from collections import namedtuple
from itertools import chain, ifilter, imap
import operator
import os
import sys
import shlex
import traceback
from subprocess import Popen, PIPE
from tempfile import NamedTemporaryFile
from threading import Thread
import warnings
import heapq
from random import Random
from math import sqrt, log
from pyspark.serializers import NoOpSerializer, CartesianDeserializer, \
BatchedSerializer, CloudPickleSerializer, PairDeserializer, \
PickleSerializer, pack_long
from pyspark.join import python_join, python_left_outer_join, \
python_right_outer_join, python_cogroup
from pyspark.statcounter import StatCounter
from pyspark.rddsampler import RDDSampler, RDDStratifiedSampler
from pyspark.storagelevel import StorageLevel
from pyspark.resultiterable import ResultIterable
from pyspark.shuffle import Aggregator, InMemoryMerger, ExternalMerger, \
get_used_memory
from py4j.java_collections import ListConverter, MapConverter
__all__ = ["RDD"]
# TODO: for Python 3.3+, PYTHONHASHSEED should be reset to disable randomized
# hash for string
def portable_hash(x):
"""
This function returns consistant hash code for builtin types, especially
for None and tuple with None.
The algrithm is similar to that one used by CPython 2.7
>>> portable_hash(None)
0
>>> portable_hash((None, 1))
219750521
"""
if x is None:
return 0
if isinstance(x, tuple):
h = 0x345678
for i in x:
h ^= portable_hash(i)
h *= 1000003
h &= 0xffffffff
h ^= len(x)
if h == -1:
h = -2
return h
return hash(x)
def _extract_concise_traceback():
"""
This function returns the traceback info for a callsite, returns a dict
with function name, file name and line number
"""
tb = traceback.extract_stack()
callsite = namedtuple("Callsite", "function file linenum")
if len(tb) == 0:
return None
file, line, module, what = tb[len(tb) - 1]
sparkpath = os.path.dirname(file)
first_spark_frame = len(tb) - 1
for i in range(0, len(tb)):
file, line, fun, what = tb[i]
if file.startswith(sparkpath):
first_spark_frame = i
break
if first_spark_frame == 0:
file, line, fun, what = tb[0]
return callsite(function=fun, file=file, linenum=line)
sfile, sline, sfun, swhat = tb[first_spark_frame]
ufile, uline, ufun, uwhat = tb[first_spark_frame - 1]
return callsite(function=sfun, file=ufile, linenum=uline)
_spark_stack_depth = 0
class _JavaStackTrace(object):
def __init__(self, sc):
tb = _extract_concise_traceback()
if tb is not None:
self._traceback = "%s at %s:%s" % (
tb.function, tb.file, tb.linenum)
else:
self._traceback = "Error! Could not extract traceback info"
self._context = sc
def __enter__(self):
global _spark_stack_depth
if _spark_stack_depth == 0:
self._context._jsc.setCallSite(self._traceback)
_spark_stack_depth += 1
def __exit__(self, type, value, tb):
global _spark_stack_depth
_spark_stack_depth -= 1
if _spark_stack_depth == 0:
self._context._jsc.setCallSite(None)
class MaxHeapQ(object):
"""
An implementation of MaxHeap.
>>> import pyspark.rdd
>>> heap = pyspark.rdd.MaxHeapQ(5)
>>> [heap.insert(i) for i in range(10)]
[None, None, None, None, None, None, None, None, None, None]
>>> sorted(heap.getElements())
[0, 1, 2, 3, 4]
>>> heap = pyspark.rdd.MaxHeapQ(5)
>>> [heap.insert(i) for i in range(9, -1, -1)]
[None, None, None, None, None, None, None, None, None, None]
>>> sorted(heap.getElements())
[0, 1, 2, 3, 4]
>>> heap = pyspark.rdd.MaxHeapQ(1)
>>> [heap.insert(i) for i in range(9, -1, -1)]
[None, None, None, None, None, None, None, None, None, None]
>>> heap.getElements()
[0]
"""
def __init__(self, maxsize):
# We start from q[1], so its children are always 2 * k
self.q = [0]
self.maxsize = maxsize
def _swim(self, k):
while (k > 1) and (self.q[k / 2] < self.q[k]):
self._swap(k, k / 2)
k = k / 2
def _swap(self, i, j):
t = self.q[i]
self.q[i] = self.q[j]
self.q[j] = t
def _sink(self, k):
N = self.size()
while 2 * k <= N:
j = 2 * k
# Here we test if both children are greater than parent
# if not swap with larger one.
if j < N and self.q[j] < self.q[j + 1]:
j = j + 1
if(self.q[k] > self.q[j]):
break
self._swap(k, j)
k = j
def size(self):
return len(self.q) - 1
def insert(self, value):
if (self.size()) < self.maxsize:
self.q.append(value)
self._swim(self.size())
else:
self._replaceRoot(value)
def getElements(self):
return self.q[1:]
def _replaceRoot(self, value):
if(self.q[1] > value):
self.q[1] = value
self._sink(1)
def _parse_memory(s):
"""
Parse a memory string in the format supported by Java (e.g. 1g, 200m) and
return the value in MB
>>> _parse_memory("256m")
256
>>> _parse_memory("2g")
2048
"""
units = {'g': 1024, 'm': 1, 't': 1 << 20, 'k': 1.0 / 1024}
if s[-1] not in units:
raise ValueError("invalid format: " + s)
return int(float(s[:-1]) * units[s[-1].lower()])
class RDD(object):
"""
A Resilient Distributed Dataset (RDD), the basic abstraction in Spark.
Represents an immutable, partitioned collection of elements that can be
operated on in parallel.
"""
def __init__(self, jrdd, ctx, jrdd_deserializer):
self._jrdd = jrdd
self.is_cached = False
self.is_checkpointed = False
self.ctx = ctx
self._jrdd_deserializer = jrdd_deserializer
self._id = jrdd.id()
def _toPickleSerialization(self):
if (self._jrdd_deserializer == PickleSerializer() or
self._jrdd_deserializer == BatchedSerializer(PickleSerializer())):
return self
else:
return self._reserialize(BatchedSerializer(PickleSerializer(), 10))
def id(self):
"""
A unique ID for this RDD (within its SparkContext).
"""
return self._id
def __repr__(self):
return self._jrdd.toString()
@property
def context(self):
"""
The L{SparkContext} that this RDD was created on.
"""
return self.ctx
def cache(self):
"""
Persist this RDD with the default storage level (C{MEMORY_ONLY_SER}).
"""
self.is_cached = True
self.persist(StorageLevel.MEMORY_ONLY_SER)
return self
def persist(self, storageLevel):
"""
Set this RDD's storage level to persist its values across operations
after the first time it is computed. This can only be used to assign
a new storage level if the RDD does not have a storage level set yet.
"""
self.is_cached = True
javaStorageLevel = self.ctx._getJavaStorageLevel(storageLevel)
self._jrdd.persist(javaStorageLevel)
return self
def unpersist(self):
"""
Mark the RDD as non-persistent, and remove all blocks for it from
memory and disk.
"""
self.is_cached = False
self._jrdd.unpersist()
return self
def checkpoint(self):
"""
Mark this RDD for checkpointing. It will be saved to a file inside the
checkpoint directory set with L{SparkContext.setCheckpointDir()} and
all references to its parent RDDs will be removed. This function must
be called before any job has been executed on this RDD. It is strongly
recommended that this RDD is persisted in memory, otherwise saving it
on a file will require recomputation.
"""
self.is_checkpointed = True
self._jrdd.rdd().checkpoint()
def isCheckpointed(self):
"""
Return whether this RDD has been checkpointed or not
"""
return self._jrdd.rdd().isCheckpointed()
def getCheckpointFile(self):
"""
Gets the name of the file to which this RDD was checkpointed
"""
checkpointFile = self._jrdd.rdd().getCheckpointFile()
if checkpointFile.isDefined():
return checkpointFile.get()
else:
return None
def map(self, f, preservesPartitioning=False):
"""
Return a new RDD by applying a function to each element of this RDD.
>>> rdd = sc.parallelize(["b", "a", "c"])
>>> sorted(rdd.map(lambda x: (x, 1)).collect())
[('a', 1), ('b', 1), ('c', 1)]
"""
def func(_, iterator):
return imap(f, iterator)
return self.mapPartitionsWithIndex(func, preservesPartitioning)
def flatMap(self, f, preservesPartitioning=False):
"""
Return a new RDD by first applying a function to all elements of this
RDD, and then flattening the results.
>>> rdd = sc.parallelize([2, 3, 4])
>>> sorted(rdd.flatMap(lambda x: range(1, x)).collect())
[1, 1, 1, 2, 2, 3]
>>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect())
[(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)]
"""
def func(s, iterator):
return chain.from_iterable(imap(f, iterator))
return self.mapPartitionsWithIndex(func, preservesPartitioning)
def mapPartitions(self, f, preservesPartitioning=False):
"""
Return a new RDD by applying a function to each partition of this RDD.
>>> rdd = sc.parallelize([1, 2, 3, 4], 2)
>>> def f(iterator): yield sum(iterator)
>>> rdd.mapPartitions(f).collect()
[3, 7]
"""
def func(s, iterator):
return f(iterator)
return self.mapPartitionsWithIndex(func)
def mapPartitionsWithIndex(self, f, preservesPartitioning=False):
"""
Return a new RDD by applying a function to each partition of this RDD,
while tracking the index of the original partition.
>>> rdd = sc.parallelize([1, 2, 3, 4], 4)
>>> def f(splitIndex, iterator): yield splitIndex
>>> rdd.mapPartitionsWithIndex(f).sum()
6
"""
return PipelinedRDD(self, f, preservesPartitioning)
def mapPartitionsWithSplit(self, f, preservesPartitioning=False):
"""
Deprecated: use mapPartitionsWithIndex instead.
Return a new RDD by applying a function to each partition of this RDD,
while tracking the index of the original partition.
>>> rdd = sc.parallelize([1, 2, 3, 4], 4)
>>> def f(splitIndex, iterator): yield splitIndex
>>> rdd.mapPartitionsWithSplit(f).sum()
6
"""
warnings.warn("mapPartitionsWithSplit is deprecated; "
"use mapPartitionsWithIndex instead", DeprecationWarning, stacklevel=2)
return self.mapPartitionsWithIndex(f, preservesPartitioning)
def getNumPartitions(self):
"""
Returns the number of partitions in RDD
>>> rdd = sc.parallelize([1, 2, 3, 4], 2)
>>> rdd.getNumPartitions()
2
"""
return self._jrdd.partitions().size()
def filter(self, f):
"""
Return a new RDD containing only the elements that satisfy a predicate.
>>> rdd = sc.parallelize([1, 2, 3, 4, 5])
>>> rdd.filter(lambda x: x % 2 == 0).collect()
[2, 4]
"""
def func(iterator):
return ifilter(f, iterator)
return self.mapPartitions(func)
def distinct(self):
"""
Return a new RDD containing the distinct elements in this RDD.
>>> sorted(sc.parallelize([1, 1, 2, 3]).distinct().collect())
[1, 2, 3]
"""
return self.map(lambda x: (x, None)) \
.reduceByKey(lambda x, _: x) \
.map(lambda (x, _): x)
def sample(self, withReplacement, fraction, seed=None):
"""
Return a sampled subset of this RDD (relies on numpy and falls back
on default random generator if numpy is unavailable).
>>> sc.parallelize(range(0, 100)).sample(False, 0.1, 2).collect() #doctest: +SKIP
[2, 3, 20, 21, 24, 41, 42, 66, 67, 89, 90, 98]
"""
assert fraction >= 0.0, "Negative fraction value: %s" % fraction
return self.mapPartitionsWithIndex(RDDSampler(withReplacement, fraction, seed).func, True)
# this is ported from scala/spark/RDD.scala
def takeSample(self, withReplacement, num, seed=None):
"""
Return a fixed-size sampled subset of this RDD (currently requires
numpy).
>>> rdd = sc.parallelize(range(0, 10))
>>> len(rdd.takeSample(True, 20, 1))
20
>>> len(rdd.takeSample(False, 5, 2))
5
>>> len(rdd.takeSample(False, 15, 3))
10
"""
numStDev = 10.0
if num < 0:
raise ValueError("Sample size cannot be negative.")
elif num == 0:
return []
initialCount = self.count()
if initialCount == 0:
return []
rand = Random(seed)
if (not withReplacement) and num >= initialCount:
# shuffle current RDD and return
samples = self.collect()
rand.shuffle(samples)
return samples
maxSampleSize = sys.maxint - int(numStDev * sqrt(sys.maxint))
if num > maxSampleSize:
raise ValueError(
"Sample size cannot be greater than %d." % maxSampleSize)
fraction = RDD._computeFractionForSampleSize(
num, initialCount, withReplacement)
samples = self.sample(withReplacement, fraction, seed).collect()
# If the first sample didn't turn out large enough, keep trying to take samples;
# this shouldn't happen often because we use a big multiplier for their initial size.
# See: scala/spark/RDD.scala
while len(samples) < num:
# TODO: add log warning for when more than one iteration was run
seed = rand.randint(0, sys.maxint)
samples = self.sample(withReplacement, fraction, seed).collect()
rand.shuffle(samples)
return samples[0:num]
@staticmethod
def _computeFractionForSampleSize(sampleSizeLowerBound, total, withReplacement):
"""
Returns a sampling rate that guarantees a sample of
size >= sampleSizeLowerBound 99.99% of the time.
How the sampling rate is determined:
Let p = num / total, where num is the sample size and total is the
total number of data points in the RDD. We're trying to compute
q > p such that
- when sampling with replacement, we're drawing each data point
with prob_i ~ Pois(q), where we want to guarantee
Pr[s < num] < 0.0001 for s = sum(prob_i for i from 0 to
total), i.e. the failure rate of not having a sufficiently large
sample < 0.0001. Setting q = p + 5 * sqrt(p/total) is sufficient
to guarantee 0.9999 success rate for num > 12, but we need a
slightly larger q (9 empirically determined).
- when sampling without replacement, we're drawing each data point
with prob_i ~ Binomial(total, fraction) and our choice of q
guarantees 1-delta, or 0.9999 success rate, where success rate is
defined the same as in sampling with replacement.
"""
fraction = float(sampleSizeLowerBound) / total
if withReplacement:
numStDev = 5
if (sampleSizeLowerBound < 12):
numStDev = 9
return fraction + numStDev * sqrt(fraction / total)
else:
delta = 0.00005
gamma = - log(delta) / total
return min(1, fraction + gamma + sqrt(gamma * gamma + 2 * gamma * fraction))
def union(self, other):
"""
Return the union of this RDD and another one.
>>> rdd = sc.parallelize([1, 1, 2, 3])
>>> rdd.union(rdd).collect()
[1, 1, 2, 3, 1, 1, 2, 3]
"""
if self._jrdd_deserializer == other._jrdd_deserializer:
rdd = RDD(self._jrdd.union(other._jrdd), self.ctx,
self._jrdd_deserializer)
return rdd
else:
# These RDDs contain data in different serialized formats, so we
# must normalize them to the default serializer.
self_copy = self._reserialize()
other_copy = other._reserialize()
return RDD(self_copy._jrdd.union(other_copy._jrdd), self.ctx,
self.ctx.serializer)
def intersection(self, other):
"""
Return the intersection of this RDD and another one. The output will
not contain any duplicate elements, even if the input RDDs did.
Note that this method performs a shuffle internally.
>>> rdd1 = sc.parallelize([1, 10, 2, 3, 4, 5])
>>> rdd2 = sc.parallelize([1, 6, 2, 3, 7, 8])
>>> rdd1.intersection(rdd2).collect()
[1, 2, 3]
"""
return self.map(lambda v: (v, None)) \
.cogroup(other.map(lambda v: (v, None))) \
.filter(lambda x: (len(x[1][0]) != 0) and (len(x[1][1]) != 0)) \
.keys()
def _reserialize(self, serializer=None):
serializer = serializer or self.ctx.serializer
if self._jrdd_deserializer == serializer:
return self
else:
converted = self.map(lambda x: x, preservesPartitioning=True)
converted._jrdd_deserializer = serializer
return converted
def __add__(self, other):
"""
Return the union of this RDD and another one.
>>> rdd = sc.parallelize([1, 1, 2, 3])
>>> (rdd + rdd).collect()
[1, 1, 2, 3, 1, 1, 2, 3]
"""
if not isinstance(other, RDD):
raise TypeError
return self.union(other)
def sortByKey(self, ascending=True, numPartitions=None, keyfunc=lambda x: x):
"""
Sorts this RDD, which is assumed to consist of (key, value) pairs.
# noqa
>>> tmp = [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)]
>>> sc.parallelize(tmp).sortByKey(True, 2).collect()
[('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)]
>>> tmp2 = [('Mary', 1), ('had', 2), ('a', 3), ('little', 4), ('lamb', 5)]
>>> tmp2.extend([('whose', 6), ('fleece', 7), ('was', 8), ('white', 9)])
>>> sc.parallelize(tmp2).sortByKey(True, 3, keyfunc=lambda k: k.lower()).collect()
[('a', 3), ('fleece', 7), ('had', 2), ('lamb', 5),...('white', 9), ('whose', 6)]
"""
if numPartitions is None:
numPartitions = self._defaultReducePartitions()
bounds = list()
# first compute the boundary of each part via sampling: we want to partition
# the key-space into bins such that the bins have roughly the same
# number of (key, value) pairs falling into them
if numPartitions > 1:
rddSize = self.count()
# constant from Spark's RangePartitioner
maxSampleSize = numPartitions * 20.0
fraction = min(maxSampleSize / max(rddSize, 1), 1.0)
samples = self.sample(False, fraction, 1).map(
lambda (k, v): k).collect()
samples = sorted(samples, reverse=(not ascending), key=keyfunc)
# we have numPartitions many parts but one of the them has
# an implicit boundary
for i in range(0, numPartitions - 1):
index = (len(samples) - 1) * (i + 1) / numPartitions
bounds.append(samples[index])
def rangePartitionFunc(k):
p = 0
while p < len(bounds) and keyfunc(k) > bounds[p]:
p += 1
if ascending:
return p
else:
return numPartitions - 1 - p
def mapFunc(iterator):
yield sorted(iterator, reverse=(not ascending), key=lambda (k, v): keyfunc(k))
return (self.partitionBy(numPartitions, partitionFunc=rangePartitionFunc)
.mapPartitions(mapFunc, preservesPartitioning=True)
.flatMap(lambda x: x, preservesPartitioning=True))
def sortBy(self, keyfunc, ascending=True, numPartitions=None):
"""
Sorts this RDD by the given keyfunc
>>> tmp = [('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)]
>>> sc.parallelize(tmp).sortBy(lambda x: x[0]).collect()
[('1', 3), ('2', 5), ('a', 1), ('b', 2), ('d', 4)]
>>> sc.parallelize(tmp).sortBy(lambda x: x[1]).collect()
[('a', 1), ('b', 2), ('1', 3), ('d', 4), ('2', 5)]
"""
return self.keyBy(keyfunc).sortByKey(ascending, numPartitions).values()
def glom(self):
"""
Return an RDD created by coalescing all elements within each partition
into a list.
>>> rdd = sc.parallelize([1, 2, 3, 4], 2)
>>> sorted(rdd.glom().collect())
[[1, 2], [3, 4]]
"""
def func(iterator):
yield list(iterator)
return self.mapPartitions(func)
def cartesian(self, other):
"""
Return the Cartesian product of this RDD and another one, that is, the
RDD of all pairs of elements C{(a, b)} where C{a} is in C{self} and
C{b} is in C{other}.
>>> rdd = sc.parallelize([1, 2])
>>> sorted(rdd.cartesian(rdd).collect())
[(1, 1), (1, 2), (2, 1), (2, 2)]
"""
# Due to batching, we can't use the Java cartesian method.
deserializer = CartesianDeserializer(self._jrdd_deserializer,
other._jrdd_deserializer)
return RDD(self._jrdd.cartesian(other._jrdd), self.ctx, deserializer)
def groupBy(self, f, numPartitions=None):
"""
Return an RDD of grouped items.
>>> rdd = sc.parallelize([1, 1, 2, 3, 5, 8])
>>> result = rdd.groupBy(lambda x: x % 2).collect()
>>> sorted([(x, sorted(y)) for (x, y) in result])
[(0, [2, 8]), (1, [1, 1, 3, 5])]
"""
return self.map(lambda x: (f(x), x)).groupByKey(numPartitions)
def pipe(self, command, env={}):
"""
Return an RDD created by piping elements to a forked external process.
>>> sc.parallelize(['1', '2', '', '3']).pipe('cat').collect()
['1', '2', '', '3']
"""
def func(iterator):
pipe = Popen(
shlex.split(command), env=env, stdin=PIPE, stdout=PIPE)
def pipe_objs(out):
for obj in iterator:
out.write(str(obj).rstrip('\n') + '\n')
out.close()
Thread(target=pipe_objs, args=[pipe.stdin]).start()
return (x.rstrip('\n') for x in iter(pipe.stdout.readline, ''))
return self.mapPartitions(func)
def foreach(self, f):
"""
Applies a function to all elements of this RDD.
>>> def f(x): print x
>>> sc.parallelize([1, 2, 3, 4, 5]).foreach(f)
"""
def processPartition(iterator):
for x in iterator:
f(x)
yield None
self.mapPartitions(processPartition).collect() # Force evaluation
def foreachPartition(self, f):
"""
Applies a function to each partition of this RDD.
>>> def f(iterator):
... for x in iterator:
... print x
... yield None
>>> sc.parallelize([1, 2, 3, 4, 5]).foreachPartition(f)
"""
self.mapPartitions(f).collect() # Force evaluation
def collect(self):
"""
Return a list that contains all of the elements in this RDD.
"""
with _JavaStackTrace(self.context) as st:
bytesInJava = self._jrdd.collect().iterator()
return list(self._collect_iterator_through_file(bytesInJava))
def _collect_iterator_through_file(self, iterator):
# Transferring lots of data through Py4J can be slow because
# socket.readline() is inefficient. Instead, we'll dump the data to a
# file and read it back.
tempFile = NamedTemporaryFile(delete=False, dir=self.ctx._temp_dir)
tempFile.close()
self.ctx._writeToFile(iterator, tempFile.name)
# Read the data into Python and deserialize it:
with open(tempFile.name, 'rb') as tempFile:
for item in self._jrdd_deserializer.load_stream(tempFile):
yield item
os.unlink(tempFile.name)
def reduce(self, f):
"""
Reduces the elements of this RDD using the specified commutative and
associative binary operator. Currently reduces partitions locally.
>>> from operator import add
>>> sc.parallelize([1, 2, 3, 4, 5]).reduce(add)
15
>>> sc.parallelize((2 for _ in range(10))).map(lambda x: 1).cache().reduce(add)
10
"""
def func(iterator):
acc = None
for obj in iterator:
if acc is None:
acc = obj
else:
acc = f(obj, acc)
if acc is not None:
yield acc
vals = self.mapPartitions(func).collect()
return reduce(f, vals)
def fold(self, zeroValue, op):
"""
Aggregate the elements of each partition, and then the results for all
the partitions, using a given associative function and a neutral "zero
value."
The function C{op(t1, t2)} is allowed to modify C{t1} and return it
as its result value to avoid object allocation; however, it should not
modify C{t2}.
>>> from operator import add
>>> sc.parallelize([1, 2, 3, 4, 5]).fold(0, add)
15
"""
def func(iterator):
acc = zeroValue
for obj in iterator:
acc = op(obj, acc)
yield acc
vals = self.mapPartitions(func).collect()
return reduce(op, vals, zeroValue)
def aggregate(self, zeroValue, seqOp, combOp):
"""
Aggregate the elements of each partition, and then the results for all
the partitions, using a given combine functions and a neutral "zero
value."
The functions C{op(t1, t2)} is allowed to modify C{t1} and return it
as its result value to avoid object allocation; however, it should not
modify C{t2}.
The first function (seqOp) can return a different result type, U, than
the type of this RDD. Thus, we need one operation for merging a T into
an U and one operation for merging two U
>>> seqOp = (lambda x, y: (x[0] + y, x[1] + 1))
>>> combOp = (lambda x, y: (x[0] + y[0], x[1] + y[1]))
>>> sc.parallelize([1, 2, 3, 4]).aggregate((0, 0), seqOp, combOp)
(10, 4)
>>> sc.parallelize([]).aggregate((0, 0), seqOp, combOp)
(0, 0)
"""
def func(iterator):
acc = zeroValue
for obj in iterator:
acc = seqOp(acc, obj)
yield acc
return self.mapPartitions(func).fold(zeroValue, combOp)
def max(self):
"""
Find the maximum item in this RDD.
>>> sc.parallelize([1.0, 5.0, 43.0, 10.0]).max()
43.0
"""
return self.reduce(max)
def min(self):
"""
Find the minimum item in this RDD.
>>> sc.parallelize([1.0, 5.0, 43.0, 10.0]).min()
1.0
"""
return self.reduce(min)
def sum(self):
"""
Add up the elements in this RDD.
>>> sc.parallelize([1.0, 2.0, 3.0]).sum()
6.0
"""
return self.mapPartitions(lambda x: [sum(x)]).reduce(operator.add)
def count(self):
"""
Return the number of elements in this RDD.
>>> sc.parallelize([2, 3, 4]).count()
3
"""
return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
def stats(self):
"""
Return a L{StatCounter} object that captures the mean, variance
and count of the RDD's elements in one operation.
"""
def redFunc(left_counter, right_counter):
return left_counter.mergeStats(right_counter)
return self.mapPartitions(lambda i: [StatCounter(i)]).reduce(redFunc)
def mean(self):
"""
Compute the mean of this RDD's elements.
>>> sc.parallelize([1, 2, 3]).mean()
2.0
"""
return self.stats().mean()
def variance(self):
"""
Compute the variance of this RDD's elements.
>>> sc.parallelize([1, 2, 3]).variance()
0.666...
"""
return self.stats().variance()
def stdev(self):
"""
Compute the standard deviation of this RDD's elements.
>>> sc.parallelize([1, 2, 3]).stdev()
0.816...
"""
return self.stats().stdev()
def sampleStdev(self):
"""
Compute the sample standard deviation of this RDD's elements (which
corrects for bias in estimating the standard deviation by dividing by
N-1 instead of N).
>>> sc.parallelize([1, 2, 3]).sampleStdev()
1.0
"""
return self.stats().sampleStdev()
def sampleVariance(self):
"""
Compute the sample variance of this RDD's elements (which corrects
for bias in estimating the variance by dividing by N-1 instead of N).
>>> sc.parallelize([1, 2, 3]).sampleVariance()
1.0
"""
return self.stats().sampleVariance()
def countByValue(self):
"""
Return the count of each unique value in this RDD as a dictionary of
(value, count) pairs.
>>> sorted(sc.parallelize([1, 2, 1, 2, 2], 2).countByValue().items())
[(1, 2), (2, 3)]
"""
def countPartition(iterator):
counts = defaultdict(int)
for obj in iterator:
counts[obj] += 1
yield counts
def mergeMaps(m1, m2):
for (k, v) in m2.iteritems():
m1[k] += v
return m1
return self.mapPartitions(countPartition).reduce(mergeMaps)
def top(self, num):
"""
Get the top N elements from a RDD.
Note: It returns the list sorted in descending order.
>>> sc.parallelize([10, 4, 2, 12, 3]).top(1)
[12]
>>> sc.parallelize([2, 3, 4, 5, 6], 2).top(2)
[6, 5]
"""
def topIterator(iterator):
q = []
for k in iterator:
if len(q) < num:
heapq.heappush(q, k)
else:
heapq.heappushpop(q, k)
yield q
def merge(a, b):
return next(topIterator(a + b))
return sorted(self.mapPartitions(topIterator).reduce(merge), reverse=True)
def takeOrdered(self, num, key=None):
"""
Get the N elements from a RDD ordered in ascending order or as
specified by the optional key function.
>>> sc.parallelize([10, 1, 2, 9, 3, 4, 5, 6, 7]).takeOrdered(6)
[1, 2, 3, 4, 5, 6]
>>> sc.parallelize([10, 1, 2, 9, 3, 4, 5, 6, 7], 2).takeOrdered(6, key=lambda x: -x)
[10, 9, 7, 6, 5, 4]
"""
def topNKeyedElems(iterator, key_=None):
q = MaxHeapQ(num)
for k in iterator:
if key_ is not None:
k = (key_(k), k)
q.insert(k)
yield q.getElements()
def unKey(x, key_=None):
if key_ is not None:
x = [i[1] for i in x]
return x
def merge(a, b):
return next(topNKeyedElems(a + b))
result = self.mapPartitions(
lambda i: topNKeyedElems(i, key)).reduce(merge)
return sorted(unKey(result, key), key=key)
def take(self, num):
"""
Take the first num elements of the RDD.
It works by first scanning one partition, and use the results from
that partition to estimate the number of additional partitions needed
to satisfy the limit.
Translated from the Scala implementation in RDD#take().
>>> sc.parallelize([2, 3, 4, 5, 6]).cache().take(2)
[2, 3]
>>> sc.parallelize([2, 3, 4, 5, 6]).take(10)
[2, 3, 4, 5, 6]
>>> sc.parallelize(range(100), 100).filter(lambda x: x > 90).take(3)
[91, 92, 93]
"""
items = []
totalParts = self._jrdd.partitions().size()
partsScanned = 0
while len(items) < num and partsScanned < totalParts: