-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathequalise_histogram.py
213 lines (140 loc) · 6.17 KB
/
equalise_histogram.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# ===================================================================
# Example : histogram equalisation on a video file or live cameran
# stream from the command line
# (e.g. python equalise_histogram.py video_file)
# or from an attached web camera by not assigning path to a video.
# Author : Amir Atapour Abarghouei, [email protected]
# Copyright (c) 2024 Amir Atapour Abarghouei
# based on : https://github.com/tobybreckon/python-examples-ip/blob/master/skeleton.py
# License : MIT - https://opensource.org/license/mit/
# ===================================================================
import cv2
import argparse
import math
import numpy as np
# ===================================================================
keep_processing = True
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform Histogram Equalisation on camera/video image.')
parser.add_argument(
"--camera",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
# ===================================================================
# basic grayscale histogram drawing in raw OpenCV using lines
# adapted from:
# https://raw.githubusercontent.com/Itseez/opencv/master/samples/python2/hist.py
def hist_lines(hist, width, height):
h = np.ones((height, width, 3)) * 255 # white background
cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX)
hist = np.int32(np.around(hist))
for x, y in enumerate(hist):
y = y[0]
cv2.line(h, (x, 0), (x, y), (0, 0, 0)) # black bars
y = np.flipud(h)
return y
# ===================================================================
# define video capture object
print("Starting camera stream")
cap = cv2.VideoCapture()
# define display window name
window_name = "Live Camera - Histogram Equalisation" # window name
# if command line arguments are provided try to read video_file
# otherwise default to capture from attached H/W camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera))):
# create window by name (note flags for resizable or not)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
while (keep_processing):
# if video file or camera successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read()
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# start a timer (to see how long processing and display takes)
start_t = cv2.getTickCount()
# *******************************
# parameters for rescaling the image for easier processing
scale_percent = 50 # percent of original size
width = int(frame.shape[1] * scale_percent/100)
height = int(frame.shape[0] * scale_percent/100)
dim = (width, height)
# parameters for overlaying text labels on the displayed images
font = cv2.FONT_HERSHEY_COMPLEX
bottomLeftCornerOfText = (10, height - 15)
fontScale = 1
fontColor = (123,49,126)
lineType = 4
# rescale image
frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)
# convert to grayscale
gray_img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# create an empty image of the same size for the output
output = np.empty(gray_img.shape, dtype=np.uint8)
# perform histogram equalisation
output = cv2.equalizeHist(gray_img)
# convert back to RGB for video stacking
gray_img = cv2.cvtColor(gray_img, cv2.COLOR_GRAY2BGR)
output = cv2.cvtColor(output, cv2.COLOR_GRAY2BGR)
# create the histograms:
gray_hist = hist_lines(cv2.calcHist([gray_img], [0], None, [256], [0, 256]), 256, height).astype(np.uint8)
output_hist = hist_lines(cv2.calcHist([output], [0], None, [256], [0, 256]), 256, height).astype(np.uint8)
# overlay corresponding labels on the images
cv2.putText(gray_img, 'Original Input',
bottomLeftCornerOfText,
font,
fontScale,
fontColor,
lineType)
cv2.putText(output, 'Histogram Equalised',
bottomLeftCornerOfText,
font,
fontScale,
fontColor,
lineType)
# stack the images into a grid
im_1 = cv2.hconcat([gray_img, gray_hist])
im_2 = cv2.hconcat([output, output_hist])
output = cv2.vconcat([im_1, im_2])
# quit instruction label
label = "press 'q' to quit"
cv2.putText(output, label, (output.shape[1] - 140, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (123,49,126))
# *******************************
# stop the timer and convert to milliseconds
# (to see how long processing and display takes)
stop_t = ((cv2.getTickCount() - start_t) /
cv2.getTickFrequency()) * 1000
label = ('Processing time: %.2f ms' % stop_t) + \
(' (Max Frames per Second (fps): %.2f' % (1000 / stop_t)) + ')'
cv2.putText(output, label, (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
# display image
cv2.imshow(window_name, output)
# wait 40ms or less depending on processing time taken (i.e. 1000ms /
# 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
# It can also be set to detect specific key strokes by recording which
# key is pressed
# e.g. if user presses "q" then exit
if (key == ord('q')):
keep_processing = False
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
# ===================================================================
# Author : Amir Atapour-Abarghouei
# Copyright (c) 2024 Dept Computer Science, Durham University, UK
# ===================================================================