forked from llvm-mirror/llvm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
LexicalScopes.cpp
351 lines (309 loc) · 11.9 KB
/
LexicalScopes.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
//===- LexicalScopes.cpp - Collecting lexical scope info ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements LexicalScopes analysis.
//
// This pass collects lexical scope information and maps machine instructions
// to respective lexical scopes.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LexicalScopes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
using namespace llvm;
#define DEBUG_TYPE "lexicalscopes"
/// reset - Reset the instance so that it's prepared for another function.
void LexicalScopes::reset() {
MF = nullptr;
CurrentFnLexicalScope = nullptr;
LexicalScopeMap.clear();
AbstractScopeMap.clear();
InlinedLexicalScopeMap.clear();
AbstractScopesList.clear();
}
/// initialize - Scan machine function and constuct lexical scope nest.
void LexicalScopes::initialize(const MachineFunction &Fn) {
reset();
MF = &Fn;
SmallVector<InsnRange, 4> MIRanges;
DenseMap<const MachineInstr *, LexicalScope *> MI2ScopeMap;
extractLexicalScopes(MIRanges, MI2ScopeMap);
if (CurrentFnLexicalScope) {
constructScopeNest(CurrentFnLexicalScope);
assignInstructionRanges(MIRanges, MI2ScopeMap);
}
}
/// extractLexicalScopes - Extract instruction ranges for each lexical scopes
/// for the given machine function.
void LexicalScopes::extractLexicalScopes(
SmallVectorImpl<InsnRange> &MIRanges,
DenseMap<const MachineInstr *, LexicalScope *> &MI2ScopeMap) {
// Scan each instruction and create scopes. First build working set of scopes.
for (const auto &MBB : *MF) {
const MachineInstr *RangeBeginMI = nullptr;
const MachineInstr *PrevMI = nullptr;
DebugLoc PrevDL;
for (const auto &MInsn : MBB) {
// Check if instruction has valid location information.
const DebugLoc MIDL = MInsn.getDebugLoc();
if (MIDL.isUnknown()) {
PrevMI = &MInsn;
continue;
}
// If scope has not changed then skip this instruction.
if (MIDL == PrevDL) {
PrevMI = &MInsn;
continue;
}
// Ignore DBG_VALUE. It does not contribute to any instruction in output.
if (MInsn.isDebugValue())
continue;
if (RangeBeginMI) {
// If we have already seen a beginning of an instruction range and
// current instruction scope does not match scope of first instruction
// in this range then create a new instruction range.
InsnRange R(RangeBeginMI, PrevMI);
MI2ScopeMap[RangeBeginMI] = getOrCreateLexicalScope(PrevDL);
MIRanges.push_back(R);
}
// This is a beginning of a new instruction range.
RangeBeginMI = &MInsn;
// Reset previous markers.
PrevMI = &MInsn;
PrevDL = MIDL;
}
// Create last instruction range.
if (RangeBeginMI && PrevMI && !PrevDL.isUnknown()) {
InsnRange R(RangeBeginMI, PrevMI);
MIRanges.push_back(R);
MI2ScopeMap[RangeBeginMI] = getOrCreateLexicalScope(PrevDL);
}
}
}
LexicalScope *LexicalScopes::findInlinedScope(DebugLoc DL) {
MDNode *Scope = nullptr;
MDNode *IA = nullptr;
DL.getScopeAndInlinedAt(Scope, IA, MF->getFunction()->getContext());
auto I = InlinedLexicalScopeMap.find(std::make_pair(Scope, IA));
return I != InlinedLexicalScopeMap.end() ? &I->second : nullptr;
}
/// findLexicalScope - Find lexical scope, either regular or inlined, for the
/// given DebugLoc. Return NULL if not found.
LexicalScope *LexicalScopes::findLexicalScope(DebugLoc DL) {
MDNode *Scope = nullptr;
MDNode *IA = nullptr;
DL.getScopeAndInlinedAt(Scope, IA, MF->getFunction()->getContext());
if (!Scope)
return nullptr;
// The scope that we were created with could have an extra file - which
// isn't what we care about in this case.
DIDescriptor D = DIDescriptor(Scope);
if (D.isLexicalBlockFile())
Scope = DILexicalBlockFile(Scope).getScope();
if (IA) {
auto I = InlinedLexicalScopeMap.find(std::make_pair(Scope, IA));
return I != InlinedLexicalScopeMap.end() ? &I->second : nullptr;
}
return findLexicalScope(Scope);
}
/// getOrCreateLexicalScope - Find lexical scope for the given DebugLoc. If
/// not available then create new lexical scope.
LexicalScope *LexicalScopes::getOrCreateLexicalScope(DebugLoc DL) {
MDNode *Scope = nullptr;
MDNode *InlinedAt = nullptr;
DL.getScopeAndInlinedAt(Scope, InlinedAt, MF->getFunction()->getContext());
if (InlinedAt) {
// Create an abstract scope for inlined function.
getOrCreateAbstractScope(Scope);
// Create an inlined scope for inlined function.
return getOrCreateInlinedScope(Scope, InlinedAt);
}
return getOrCreateRegularScope(Scope);
}
/// getOrCreateRegularScope - Find or create a regular lexical scope.
LexicalScope *LexicalScopes::getOrCreateRegularScope(MDNode *Scope) {
DIDescriptor D = DIDescriptor(Scope);
if (D.isLexicalBlockFile()) {
Scope = DILexicalBlockFile(Scope).getScope();
D = DIDescriptor(Scope);
}
auto I = LexicalScopeMap.find(Scope);
if (I != LexicalScopeMap.end())
return &I->second;
LexicalScope *Parent = nullptr;
if (D.isLexicalBlock())
Parent = getOrCreateLexicalScope(DebugLoc::getFromDILexicalBlock(Scope));
// FIXME: Use forward_as_tuple instead of make_tuple, once MSVC2012
// compatibility is no longer required.
I = LexicalScopeMap.emplace(std::piecewise_construct, std::make_tuple(Scope),
std::make_tuple(Parent, DIDescriptor(Scope),
nullptr, false)).first;
if (!Parent && DIDescriptor(Scope).isSubprogram() &&
DISubprogram(Scope).describes(MF->getFunction()))
CurrentFnLexicalScope = &I->second;
return &I->second;
}
/// getOrCreateInlinedScope - Find or create an inlined lexical scope.
LexicalScope *LexicalScopes::getOrCreateInlinedScope(MDNode *ScopeNode,
MDNode *InlinedAt) {
std::pair<const MDNode*, const MDNode*> P(ScopeNode, InlinedAt);
auto I = InlinedLexicalScopeMap.find(P);
if (I != InlinedLexicalScopeMap.end())
return &I->second;
LexicalScope *Parent;
DILexicalBlock Scope(ScopeNode);
if (Scope.isSubprogram())
Parent = getOrCreateLexicalScope(DebugLoc::getFromDILocation(InlinedAt));
else
Parent = getOrCreateInlinedScope(Scope.getContext(), InlinedAt);
// FIXME: Use forward_as_tuple instead of make_tuple, once MSVC2012
// compatibility is no longer required.
I = InlinedLexicalScopeMap.emplace(std::piecewise_construct,
std::make_tuple(P),
std::make_tuple(Parent, Scope, InlinedAt,
false)).first;
return &I->second;
}
/// getOrCreateAbstractScope - Find or create an abstract lexical scope.
LexicalScope *LexicalScopes::getOrCreateAbstractScope(const MDNode *N) {
assert(N && "Invalid Scope encoding!");
DIDescriptor Scope(N);
if (Scope.isLexicalBlockFile())
Scope = DILexicalBlockFile(Scope).getScope();
auto I = AbstractScopeMap.find(Scope);
if (I != AbstractScopeMap.end())
return &I->second;
LexicalScope *Parent = nullptr;
if (Scope.isLexicalBlock()) {
DILexicalBlock DB(Scope);
DIDescriptor ParentDesc = DB.getContext();
Parent = getOrCreateAbstractScope(ParentDesc);
}
I = AbstractScopeMap.emplace(std::piecewise_construct,
std::forward_as_tuple(Scope),
std::forward_as_tuple(Parent, Scope,
nullptr, true)).first;
if (Scope.isSubprogram())
AbstractScopesList.push_back(&I->second);
return &I->second;
}
/// constructScopeNest
void LexicalScopes::constructScopeNest(LexicalScope *Scope) {
assert(Scope && "Unable to calculate scope dominance graph!");
SmallVector<LexicalScope *, 4> WorkStack;
WorkStack.push_back(Scope);
unsigned Counter = 0;
while (!WorkStack.empty()) {
LexicalScope *WS = WorkStack.back();
const SmallVectorImpl<LexicalScope *> &Children = WS->getChildren();
bool visitedChildren = false;
for (SmallVectorImpl<LexicalScope *>::const_iterator SI = Children.begin(),
SE = Children.end();
SI != SE; ++SI) {
LexicalScope *ChildScope = *SI;
if (!ChildScope->getDFSOut()) {
WorkStack.push_back(ChildScope);
visitedChildren = true;
ChildScope->setDFSIn(++Counter);
break;
}
}
if (!visitedChildren) {
WorkStack.pop_back();
WS->setDFSOut(++Counter);
}
}
}
/// assignInstructionRanges - Find ranges of instructions covered by each
/// lexical scope.
void LexicalScopes::assignInstructionRanges(
SmallVectorImpl<InsnRange> &MIRanges,
DenseMap<const MachineInstr *, LexicalScope *> &MI2ScopeMap) {
LexicalScope *PrevLexicalScope = nullptr;
for (SmallVectorImpl<InsnRange>::const_iterator RI = MIRanges.begin(),
RE = MIRanges.end();
RI != RE; ++RI) {
const InsnRange &R = *RI;
LexicalScope *S = MI2ScopeMap.lookup(R.first);
assert(S && "Lost LexicalScope for a machine instruction!");
if (PrevLexicalScope && !PrevLexicalScope->dominates(S))
PrevLexicalScope->closeInsnRange(S);
S->openInsnRange(R.first);
S->extendInsnRange(R.second);
PrevLexicalScope = S;
}
if (PrevLexicalScope)
PrevLexicalScope->closeInsnRange();
}
/// getMachineBasicBlocks - Populate given set using machine basic blocks which
/// have machine instructions that belong to lexical scope identified by
/// DebugLoc.
void LexicalScopes::getMachineBasicBlocks(
DebugLoc DL, SmallPtrSetImpl<const MachineBasicBlock *> &MBBs) {
MBBs.clear();
LexicalScope *Scope = getOrCreateLexicalScope(DL);
if (!Scope)
return;
if (Scope == CurrentFnLexicalScope) {
for (const auto &MBB : *MF)
MBBs.insert(&MBB);
return;
}
SmallVectorImpl<InsnRange> &InsnRanges = Scope->getRanges();
for (SmallVectorImpl<InsnRange>::iterator I = InsnRanges.begin(),
E = InsnRanges.end();
I != E; ++I) {
InsnRange &R = *I;
MBBs.insert(R.first->getParent());
}
}
/// dominates - Return true if DebugLoc's lexical scope dominates at least one
/// machine instruction's lexical scope in a given machine basic block.
bool LexicalScopes::dominates(DebugLoc DL, MachineBasicBlock *MBB) {
LexicalScope *Scope = getOrCreateLexicalScope(DL);
if (!Scope)
return false;
// Current function scope covers all basic blocks in the function.
if (Scope == CurrentFnLexicalScope && MBB->getParent() == MF)
return true;
bool Result = false;
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
++I) {
DebugLoc IDL = I->getDebugLoc();
if (IDL.isUnknown())
continue;
if (LexicalScope *IScope = getOrCreateLexicalScope(IDL))
if (Scope->dominates(IScope))
return true;
}
return Result;
}
/// dump - Print data structures.
void LexicalScope::dump(unsigned Indent) const {
#ifndef NDEBUG
raw_ostream &err = dbgs();
err.indent(Indent);
err << "DFSIn: " << DFSIn << " DFSOut: " << DFSOut << "\n";
const MDNode *N = Desc;
err.indent(Indent);
N->dump();
if (AbstractScope)
err << std::string(Indent, ' ') << "Abstract Scope\n";
if (!Children.empty())
err << std::string(Indent + 2, ' ') << "Children ...\n";
for (unsigned i = 0, e = Children.size(); i != e; ++i)
if (Children[i] != this)
Children[i]->dump(Indent + 2);
#endif
}