forked from cocodataset/cocoapi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CocoEval.m
438 lines (426 loc) · 21.8 KB
/
CocoEval.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
classdef CocoEval < handle
% Interface for evaluating detection on the Microsoft COCO dataset.
%
% The usage for CocoEval is as follows:
% cocoGt=..., cocoDt=... % load dataset and results
% E = CocoEval(cocoGt,cocoDt); % initialize CocoEval object
% E.params.recThrs = ...; % set parameters as desired
% E.evaluate(); % run per image evaluation
% disp( E.evalImgs ) % inspect per image results
% E.accumulate(); % accumulate per image results
% disp( E.eval ) % inspect accumulated results
% E.summarize(); % display summary metrics of results
% E.analyze(); % plot detailed analysis of errors (slow)
% For example usage see evalDemo.m and http://mscoco.org/.
%
% The evaluation parameters are as follows (defaults in brackets):
% imgIds - [all] N img ids to use for evaluation
% catIds - [all] K cat ids to use for evaluation
% iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation
% recThrs - [0:.01:1] R=101 recall thresholds for evaluation
% areaRng - [...] A=4 object area ranges for evaluation
% maxDets - [1 10 100] M=3 thresholds on max detections per image
% iouType - ['segm'] set iouType to 'segm', 'bbox' or 'keypoints'
% useCats - [1] if true use category labels for evaluation
% Note: iouType replaced the now DEPRECATED useSegm parameter.
% Note: if useCats=0 category labels are ignored as in proposal scoring.
% Note: by default areaRng=[0 1e5; 0 32; 32 96; 96 1e5].^2. These A=4
% settings correspond to all, small, medium, and large objects, resp.
%
% evaluate(): evaluates detections on every image and setting and concats
% the results into the KxA struct array "evalImgs" with fields:
% dtIds - [1xD] id for each of the D detections (dt)
% gtIds - [1xG] id for each of the G ground truths (gt)
% dtImgIds - [1xD] image id for each dt
% gtImgIds - [1xG] image id for each gt
% dtMatches - [TxD] matching gt id at each IoU or 0
% gtMatches - [TxG] matching dt id at each IoU or 0
% dtScores - [1xD] confidence of each dt
% dtIgnore - [TxD] ignore flag for each dt at each IoU
% gtIgnore - [1xG] ignore flag for each gt
%
% accumulate(): accumulates the per-image, per-category evaluation
% results in "evalImgs" into the struct "eval" with fields:
% params - parameters used for evaluation
% date - date evaluation was performed
% counts - [T,R,K,A,M] parameter dimensions (see above)
% precision - [TxRxKxAxM] precision for every evaluation setting
% recall - [TxKxAxM] max recall for every evaluation setting
% Note: precision and recall==-1 for settings with no gt objects.
%
% summarize(): computes and displays 12 summary metrics based on the
% "eval" struct. Note that summarize() assumes the evaluation was
% computed with certain default params (including default area ranges),
% if not, the display may show NaN outputs for certain metrics. Results
% of summarize() are stored in a 12 element vector "stats".
%
% analyze(): generates plots with detailed breakdown of false positives.
% Inspired by "Diagnosing Error in Object Detectors" by D. Hoiem et al.
% Generates one plot per category (80), supercategory (12), and overall
% (1), multiplied by 4 scales, for a total of (80+12+1)*4=372 plots. Each
% plot contains a series of precision recall curves where each PR curve
% is guaranteed to be strictly higher than the previous as the evaluation
% setting becomes more permissive. These plots give insight into errors
% made by a detector. A more detailed description is given at mscoco.org.
% Note: analyze() is quite slow as it calls evaluate() multiple times.
% Note: if pdfcrop is not found then set pdfcrop path appropriately e.g.:
% setenv('PATH',[getenv('PATH') ':/Library/TeX/texbin/']);
%
% See also CocoApi, MaskApi, cocoDemo, evalDemo
%
% Microsoft COCO Toolbox. version 2.0
% Data, paper, and tutorials available at: http://mscoco.org/
% Code written by Piotr Dollar and Tsung-Yi Lin, 2015.
% Licensed under the Simplified BSD License [see coco/license.txt]
properties
cocoGt % ground truth COCO API
cocoDt % detections COCO API
params % evaluation parameters
evalImgs % per-image per-category evaluation results
eval % accumulated evaluation results
stats % evaluation summary statistics
end
methods
function ev = CocoEval( cocoGt, cocoDt, iouType )
% Initialize CocoEval using coco APIs for gt and dt.
if(nargin>0), ev.cocoGt = cocoGt; end
if(nargin>1), ev.cocoDt = cocoDt; end
if(nargin>0), ev.params.imgIds = sort(ev.cocoGt.getImgIds()); end
if(nargin>0), ev.params.catIds = sort(ev.cocoGt.getCatIds()); end
if(nargin<3), iouType='segm'; end
ev.params.iouThrs = .5:.05:.95;
ev.params.recThrs = 0:.01:1;
if( any(strcmp(iouType,{'bbox','segm'})) )
ev.params.areaRng = [0 1e5; 0 32; 32 96; 96 1e5].^2;
ev.params.maxDets = [1 10 100];
elseif( strcmp(iouType,'keypoints') )
ev.params.areaRng = [0 1e5; 32 96; 96 1e5].^2;
ev.params.maxDets = 20;
else
error('unknown iouType: %s',iouType);
end
ev.params.iouType = iouType;
ev.params.useCats = 1;
end
function evaluate( ev )
% Run per image evaluation on given images.
fprintf('Running per image evaluation... '); clk=clock;
p=ev.params; if(~p.useCats), p.catIds=1; end; t={'bbox','segm'};
if(isfield(p,'useSegm')), p.iouType=t{p.useSegm+1}; end
p.imgIds=unique(p.imgIds); p.catIds=unique(p.catIds); ev.params=p;
N=length(p.imgIds); K=length(p.catIds); A=size(p.areaRng,1);
[nGt,iGt]=getAnnCounts(ev.cocoGt,p.imgIds,p.catIds,p.useCats);
[nDt,iDt]=getAnnCounts(ev.cocoDt,p.imgIds,p.catIds,p.useCats);
[ks,is]=ndgrid(1:K,1:N); ev.evalImgs=cell(N,K,A);
for i=1:K*N, if(nGt(i)==0 && nDt(i)==0), continue; end
gt=ev.cocoGt.data.annotations(iGt(i):iGt(i)+nGt(i)-1);
dt=ev.cocoDt.data.annotations(iDt(i):iDt(i)+nDt(i)-1);
if(~isfield(gt,'ignore')), [gt(:).ignore]=deal(0); end
if( strcmp(p.iouType,'segm') )
im=ev.cocoGt.loadImgs(p.imgIds(is(i))); h=im.height; w=im.width;
for g=1:nGt(i), s=gt(g).segmentation; if(~isstruct(s))
gt(g).segmentation=MaskApi.frPoly(s,h,w); end; end
f='segmentation'; if(isempty(dt)), [dt(:).(f)]=deal(); end
if(~isfield(dt,f)), s=MaskApi.frBbox(cat(1,dt.bbox),h,w);
for d=1:nDt(i), dt(d).(f)=s(d); end; end
elseif( strcmp(p.iouType,'bbox') )
f='bbox'; if(isempty(dt)), [dt(:).(f)]=deal(); end
if(~isfield(dt,f)), s=MaskApi.toBbox([dt.segmentation]);
for d=1:nDt(i), dt(d).(f)=s(d,:); end; end
elseif( strcmp(p.iouType,'keypoints') )
gtIg=[gt.ignore]|[gt.num_keypoints]==0;
for g=1:nGt(i), gt(g).ignore=gtIg(g); end
else
error('unknown iouType: %s',p.iouType);
end
q=p; q.imgIds=p.imgIds(is(i)); q.maxDets=max(p.maxDets);
for j=1:A, q.areaRng=p.areaRng(j,:);
ev.evalImgs{is(i),ks(i),j}=CocoEval.evaluateImg(gt,dt,q); end
end
E=ev.evalImgs; nms={'dtIds','gtIds','dtImgIds','gtImgIds',...
'dtMatches','gtMatches','dtScores','dtIgnore','gtIgnore'};
ev.evalImgs=repmat(cell2struct(cell(9,1),nms,1),K,A);
for i=1:K, is=find(nGt(i,:)>0|nDt(i,:)>0);
if(~isempty(is)), for j=1:A, E0=[E{is,i,j}]; for k=1:9
ev.evalImgs(i,j).(nms{k})=[E0{k:9:end}]; end; end; end
end
fprintf('DONE (t=%0.2fs).\n',etime(clock,clk));
function [ns,is] = getAnnCounts( coco, imgIds, catIds, useCats )
% Return ann counts and indices for given imgIds and catIds.
as=sort(coco.getCatIds()); [~,a]=ismember(coco.inds.annCatIds,as);
bs=sort(coco.getImgIds()); [~,b]=ismember(coco.inds.annImgIds,bs);
if(~useCats), a(:)=1; as=1; end; ns=zeros(length(as),length(bs));
for ind=1:length(a), ns(a(ind),b(ind))=ns(a(ind),b(ind))+1; end
is=reshape(cumsum([0 ns(1:end-1)])+1,size(ns));
[~,a]=ismember(catIds,as); [~,b]=ismember(imgIds,bs);
ns=ns(a,b); is=is(a,b);
end
end
function accumulate( ev )
% Accumulate per image evaluation results.
fprintf('Accumulating evaluation results... '); clk=clock;
if(isempty(ev.evalImgs)), error('Please run evaluate() first'); end
p=ev.params; T=length(p.iouThrs); R=length(p.recThrs);
K=length(p.catIds); A=size(p.areaRng,1); M=length(p.maxDets);
precision=-ones(T,R,K,A,M); recall=-ones(T,K,A,M);
[ks,as,ms]=ndgrid(1:K,1:A,1:M);
for k=1:K*A*M
E=ev.evalImgs(ks(k),as(k)); is=E.dtImgIds; mx=p.maxDets(ms(k));
np=nnz(~E.gtIgnore); if(np==0), continue; end
t=[0 find(diff(is)) length(is)]; t=t(2:end)-t(1:end-1); is=is<0;
r=0; for i=1:length(t), is(r+1:r+min(mx,t(i)))=1; r=r+t(i); end
dtm=E.dtMatches(:,is); dtIg=E.dtIgnore(:,is);
[~,o]=sort(E.dtScores(is),'descend');
tps=reshape( dtm & ~dtIg,T,[]); tps=tps(:,o);
fps=reshape(~dtm & ~dtIg,T,[]); fps=fps(:,o);
precision(:,:,k)=0; recall(:,k)=0;
for t=1:T
tp=cumsum(tps(t,:)); fp=cumsum(fps(t,:)); nd=length(tp);
rc=tp/np; pr=tp./(fp+tp); q=zeros(1,R); thrs=p.recThrs;
if(nd==0 || tp(nd)==0), continue; end; recall(t,k)=rc(end);
for i=nd-1:-1:1, pr(i)=max(pr(i+1),pr(i)); end; i=1; r=1; s=100;
while(r<=R && i<=nd), if(rc(i)>=thrs(r)), q(r)=pr(i); r=r+1; else
i=i+1; if(i+s<=nd && rc(i+s)<thrs(r)), i=i+s; end; end; end
precision(t,:,k)=q;
end
end
ev.eval=struct('params',p,'date',date,'counts',[T R K A M],...
'precision',precision,'recall',recall);
fprintf('DONE (t=%0.2fs).\n',etime(clock,clk));
end
function summarize( ev )
% Compute and display summary metrics for evaluation results.
if(isempty(ev.eval)), error('Please run accumulate() first'); end
if( any(strcmp(ev.params.iouType,{'bbox','segm'})) )
k=100; M={{1,':','all',k},{1,.50,'all',k}, {1,.75,'all',k},...
{1,':','small',k}, {1,':','medium',k}, {1,':','large',k},...
{0,':','all',1}, {0,':','all',10}, {0,':','all',k},...
{0,':','small',k}, {0,':','medium',k}, {0,':','large',k}};
elseif( strcmp(ev.params.iouType,'keypoints') )
k=20; M={{1,':','all',k},{1,.50,'all',k}, {1,.75,'all',k},...
{1,':','medium',k}, {1,':','large',k},...
{0,':','all',k},{0,.50,'all',k}, {0,.75,'all',k},...
{0,':','medium',k}, {0,':','large',k}};
end
k=length(M); ev.stats=zeros(1,k);
for s=1:k, ev.stats(s)=summarize1(M{s}{:}); end
function s = summarize1( ap, iouThr, areaRng, maxDets )
p=ev.params; i=iouThr; m=find(p.maxDets==maxDets);
if(i~=':'), iStr=sprintf('%.2f ',i); i=find(p.iouThrs==i);
else iStr=sprintf('%.2f:%.2f',min(p.iouThrs),max(p.iouThrs)); end
as=[0 1e5; 0 32; 32 96; 96 1e5].^2; a=find(areaRng(1)=='asml');
a=find(p.areaRng(:,1)==as(a,1) & p.areaRng(:,2)==as(a,2));
if(ap), tStr='Precision (AP)'; s=ev.eval.precision(i,:,:,a,m);
else tStr='Recall (AR)'; s=ev.eval.recall(i,:,a,m); end
fStr=' Average %s @[ IoU=%s | area=%6s | maxDets=%3i ] = %.3f\n';
s=mean(s(s>=0)); fprintf(fStr,tStr,iStr,areaRng,maxDets,s);
end
end
function visualize( ev, varargin )
% Crop detector bbox results after evaluation (fp, tp, or fn).
% Preliminary implementation, undocumented. Use at your own risk.
% Require's Piotr's Toolbox (https://github.com/pdollar/toolbox/).
def = { 'imgDir','../images/val2014/', 'outDir','visualize', ...
'catIds',[], 'areaIds',1:4, 'type',{'tp','fp','fn'}, ...
'dim',200, 'pad',1.5, 'ds',[10 10 1] };
p = getPrmDflt(varargin,def,0);
if(isempty(p.catIds)), p.catIds=ev.params.catIds; end
type=p.type; d=p.dim; pad=p.pad; ds=p.ds;
% recursive call unless performing singleton task
if(length(p.catIds)>1), q=p; for i=1:length(p.catIds)
q.catIds=p.catIds(i); ev.visualize(q); end; return; end
if(length(p.areaIds)>1), q=p; for i=1:length(p.areaIds)
q.areaIds=p.areaIds(i); ev.visualize(q); end; return; end
if(iscell(p.type)), q=p; for i=1:length(p.type)
q.type=p.type{i}; ev.visualize(q); end; return; end
% generate file name for result
areaNms={'all','small','medium','large'};
catNm=regexprep(ev.cocoGt.loadCats(p.catIds).name,' ','_');
fn=sprintf('%s/%s-%s-%s%%03i.jpg',p.outDir,...
catNm,areaNms{p.areaIds},type); disp(fn);
if(exist(sprintf(fn,1),'file')), return; end
% select appropriate gt and dt according to type
E=ev.evalImgs(p.catIds==ev.params.catIds,p.areaIds);
E.dtMatches=E.dtMatches(1,:); E=select(E,1,~E.dtIgnore(1,:));
E.gtMatches=E.gtMatches(1,:); E=select(E,0,~E.gtIgnore(1,:));
[~,o]=sort(E.dtScores,'descend'); E=select(E,1,o);
if(strcmp(type,'fn'))
E=select(E,0,~E.gtMatches); gt=E.gtIds; G=1; D=0;
elseif(strcmp(type,'tp'))
E=select(E,1,E.dtMatches>0); dt=E.dtIds; gt=E.dtMatches; G=1; D=1;
elseif(strcmp(type,'fp'))
E=select(E,1,~E.dtMatches); dt=E.dtIds; G=0; D=1;
end
% load dt, gt, and im and crop region bbs
if(D), is=E.dtImgIds; else is=E.gtImgIds; end
n=min(prod(ds),length(is)); is=ev.cocoGt.loadImgs(is(1:n));
if(G), gt=ev.cocoGt.loadAnns(gt(1:n)); bb=gt; end
if(D), dt=ev.cocoDt.loadAnns(dt(1:n)); bb=dt; end
if(~n), return; end; bb=cat(1,bb.bbox); bb(:,1:2)=bb(:,1:2)+1;
r=max(bb(:,3:4),[],2)*pad/d; r=[r r r r];
bb=bbApply('resize',bbApply('squarify',bb,0),pad,pad);
% get dt and gt bbs in relative coordinates
if(G), gtBb=cat(1,gt.bbox); gtBb(:,1:2)=gtBb(:,1:2)-bb(:,1:2);
gtBb=gtBb./r; if(~D), gtBb=[gtBb round([gt(1:n).area])']; end; end
if(D), dtBb=cat(1,dt.bbox); dtBb(:,1:2)=dtBb(:,1:2)-bb(:,1:2);
dtBb=dtBb./r; dtBb=[dtBb E.dtScores(1:n)']; end
% crop image samples appropriately
ds(3)=ceil(n/prod(ds(1:2))); Is=cell(ds);
for i=1:n
I=imread(sprintf('%s/%s',p.imgDir,is(i).file_name));
I=bbApply('crop',I,bb(i,:),0,[d d]); I=I{1};
if(D), I=bbApply('embed',I,dtBb(i,:),'col',[0 0 255]); end
if(G), I=bbApply('embed',I,gtBb(i,:),'col',[0 255 0]); end
Is{i}=I;
end
for i=n+1:prod(ds), Is{i}=zeros(d,d,3,'uint8'); end
I=reshape(cell2mat(permute(Is,[2 1 3])),ds(1)*d,ds(2)*d,3,ds(3));
for i=1:ds(3), imwrite(imresize(I(:,:,:,i),.5),sprintf(fn,i)); end
% helper function for taking subset of E
function E = select( E, D, kp )
fs={'Matches','Ids','ImgIds','Scores'}; pr={'gt','dt'};
for f=1:3+D, fd=[pr{D+1} fs{f}]; E.(fd)=E.(fd)(kp); end
end
end
function analyze( ev )
% Derek Hoiem style analyis of false positives.
outDir='./analyze'; if(~exist(outDir,'dir')), mkdir(outDir); end
if(~isfield(ev.cocoGt.data.annotations,'ignore')),
[ev.cocoGt.data.annotations.ignore]=deal(0); end
dt=ev.cocoDt; gt=ev.cocoGt; prm=ev.params; rs=prm.recThrs;
ev.params.maxDets=100; catIds=ev.cocoGt.getCatIds();
% compute precision at different IoU values
ev.params.catIds=catIds; ev.params.iouThrs=[.75 .5 .1];
ev.evaluate(); ev.accumulate(); ps=ev.eval.precision;
ps(4:7,:,:,:)=0; ev.params.iouThrs=.1; ev.params.useCats=0;
for k=1:length(catIds), catId=catIds(k);
nm=ev.cocoGt.loadCats(catId); nm=[nm.supercategory '-' nm.name];
fprintf('\nAnalyzing %s (%i):\n',nm,k); clk=clock;
% select detections for single category only
D=dt.data; A=D.annotations; A=A([A.category_id]==catId);
D.annotations=A; ev.cocoDt=dt; ev.cocoDt=CocoApi(D);
% compute precision but ignore superclass confusion
is=gt.getCatIds('supNms',gt.loadCats(catId).supercategory);
D=gt.data; A=D.annotations; A=A(ismember([A.category_id],is));
[A([A.category_id]~=catId).ignore]=deal(1);
D.annotations=A; ev.cocoGt=CocoApi(D);
ev.evaluate(); ev.accumulate(); ps(4,:,k,:)=ev.eval.precision;
% compute precision but ignore any class confusion
D=gt.data; A=D.annotations;
[A([A.category_id]~=catId).ignore]=deal(1);
D.annotations=A; ev.cocoGt=gt; ev.cocoGt.data=D;
ev.evaluate(); ev.accumulate(); ps(5,:,k,:)=ev.eval.precision;
% fill in background and false negative errors and plot
ps(ps==-1)=0; ps(6,:,k,:)=ps(5,:,k,:)>0; ps(7,:,k,:)=1;
makeplot(rs,ps(:,:,k,:),outDir,nm);
fprintf('DONE (t=%0.2fs).\n',etime(clock,clk));
end
% plot averages over all categories and supercategories
ev.cocoDt=dt; ev.cocoGt=gt; ev.params=prm;
fprintf('\n'); makeplot(rs,mean(ps,3),outDir,'overall-all');
sup={ev.cocoGt.loadCats(catIds).supercategory};
for k=unique(sup), ps1=mean(ps(:,:,strcmp(sup,k),:),3);
makeplot(rs,ps1,outDir,['overall-' k{1}]); end
function makeplot( rs, ps, outDir, nm )
% Plot FP breakdown using area plot.
fprintf('Plotting results... '); t=clock;
cs=[ones(2,3); .31 .51 .74; .75 .31 .30;
.36 .90 .38; .50 .39 .64; 1 .6 0]; m=size(ps,1);
areaNms={'all','small','medium','large'}; nm0=nm; ps0=ps;
for a=1:size(ps,4)
nm=[nm0 '-' areaNms{a}]; ps=ps0(:,:,:,a);
ap=round(mean(ps,2)*1000); ds=[ps(1,:); diff(ps)]';
ls={'C75','C50','Loc','Sim','Oth','BG','FN'};
for i=1:m, if(ap(i)==1000), ls{i}=['[1.00] ' ls{i}]; else
ls{i}=sprintf('[.%03i] %s',ap(i),ls{i}); end; end
figure(1); clf; h=area(rs,ds); legend(ls,'location','sw');
for i=1:m, set(h(i),'FaceColor',cs(i,:)); end; title(nm)
xlabel('recall'); ylabel('precision'); set(gca,'fontsize',20)
nm=[outDir '/' regexprep(nm,' ','_')]; print(nm,'-dpdf')
[status,~]=system(['pdfcrop ' nm '.pdf ' nm '.pdf']);
if(status>0), warning('pdfcrop not found.'); end
end
fprintf('DONE (t=%0.2fs).\n',etime(clock,t));
end
end
end
methods( Static )
function e = evaluateImg( gt, dt, params )
% Run evaluation for a single image and category.
p=params; T=length(p.iouThrs); aRng=p.areaRng;
a=[gt.area]; gtIg=[gt.iscrowd]|[gt.ignore]|a<aRng(1)|a>aRng(2);
G=length(gt); D=length(dt); for g=1:G, gt(g).ignore=gtIg(g); end
% sort dt highest score first, sort gt ignore last
[~,o]=sort([gt.ignore],'ascend'); gt=gt(o);
[~,o]=sort([dt.score],'descend'); dt=dt(o);
if(D>p.maxDets), D=p.maxDets; dt=dt(1:D); end
% compute iou between each dt and gt region
iscrowd = uint8([gt.iscrowd]);
t=find(strcmp(p.iouType,{'segm','bbox','keypoints'}));
if(t==1), g=[gt.segmentation]; elseif(t==2), g=cat(1,gt.bbox); end
if(t==1), d=[dt.segmentation]; elseif(t==2), d=cat(1,dt.bbox); end
if(t<=2), ious=MaskApi.iou(d,g,iscrowd); else
ious=CocoEval.oks(gt,dt); end
% attempt to match each (sorted) dt to each (sorted) gt
gtm=zeros(T,G); gtIds=[gt.id]; gtIg=[gt.ignore];
dtm=zeros(T,D); dtIds=[dt.id]; dtIg=zeros(T,D);
for t=1:T
for d=1:D
% information about best match so far (m=0 -> unmatched)
iou=min(p.iouThrs(t),1-1e-10); m=0;
for g=1:G
% if this gt already matched, and not a crowd, continue
if( gtm(t,g)>0 && ~iscrowd(g) ), continue; end
% if dt matched to reg gt, and on ignore gt, stop
if( m>0 && gtIg(m)==0 && gtIg(g)==1 ), break; end
% if match successful and best so far, store appropriately
if( ious(d,g)>=iou ), iou=ious(d,g); m=g; end
end
% if match made store id of match for both dt and gt
if(~m), continue; end; dtIg(t,d)=gtIg(m);
dtm(t,d)=gtIds(m); gtm(t,m)=dtIds(d);
end
end
% set unmatched detections outside of area range to ignore
if(isempty(dt)), a=zeros(1,0); else a=[dt.area]; end
dtIg = dtIg | (dtm==0 & repmat(a<aRng(1)|a>aRng(2),T,1));
% store results for given image and category
dtImgIds=ones(1,D)*p.imgIds; gtImgIds=ones(1,G)*p.imgIds;
e = {dtIds,gtIds,dtImgIds,gtImgIds,dtm,gtm,[dt.score],dtIg,gtIg};
end
function o = oks( gt, dt )
% Compute Object Keypoint Similarity (OKS) between objects.
G=length(gt); D=length(dt); o=zeros(D,G); if(~D||~G), return; end
% sigmas hard-coded for person class, will need params eventually
sigmas=[.26 .25 .25 .35 .35 .79 .79 .72 .72 .62 ...
.62 1.07 1.07 .87 .87 .89 .89]/10;
vars=(sigmas*2).^2; k=length(sigmas); m=k*3; bb=cat(1,gt.bbox);
% create bounds for ignore regions (double the gt bbox)
x0=bb(:,1)-bb(:,3); x1=bb(:,1)+bb(:,3)*2;
y0=bb(:,2)-bb(:,4); y1=bb(:,2)+bb(:,4)*2;
% extract keypoint locations and visibility flags
gKp=cat(1,gt.keypoints); assert(size(gKp,2)==m);
dKp=cat(1,dt.keypoints); assert(size(dKp,2)==m);
xg=gKp(:,1:3:m); yg=gKp(:,2:3:m); vg=gKp(:,3:3:m);
xd=dKp(:,1:3:m); yd=dKp(:,2:3:m);
% compute oks between each detection and ground truth object
for d=1:D
for g=1:G
v=vg(g,:); x=xd(d,:); y=yd(d,:); k1=nnz(v);
if( k1>0 )
% measure the per-keypoint distance if keypoints visible
dx=x-xg(g,:); dy=y-yg(g,:);
else
% measure minimum distance to keypoints in (x0,y0) & (x1,y1)
dx=max(0,x0(g,:)-x)+max(0,x-x1(g,:));
dy=max(0,y0(g,:)-y)+max(0,y-y1(g,:));
end
% use the distances to compute the oks
e=(dx.^2+dy.^2)./vars/gt(g).area/2;
if(k1>0), e=e(v>0); else k1=k; end
o(d,g)=sum(exp(-e))/k1;
end
end
end
end
end