-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathsinglebest_ensemble.py
442 lines (358 loc) · 14 KB
/
singlebest_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
from __future__ import annotations
from typing import Sequence
import os
import numpy as np
from smac.runhistory.runhistory import RunHistory
from autosklearn.automl_common.common.utils.backend import Backend
from autosklearn.data.validation import SUPPORTED_FEAT_TYPES
from autosklearn.ensemble_building.run import Run
from autosklearn.ensembles.abstract_ensemble import AbstractEnsemble
from autosklearn.metrics import Scorer, calculate_losses
from autosklearn.pipeline.base import BasePipeline
class AbstractSingleModelEnsemble(AbstractEnsemble):
"""Ensemble consisting of a single model.
Parameters
----------
task_type: int
An identifier indicating which task is being performed.
metrics: Sequence[Scorer] | Scorer
The metrics used to evaluate the models.
backend : Backend
Gives access to the backend of Auto-sklearn. Not used.
random_state: int | RandomState | None = None
Not used.
"""
def __init__(
self,
task_type: int,
metrics: Sequence[Scorer] | Scorer,
backend: Backend,
random_state: int | np.random.RandomState | None = None,
):
self.weights_ = [1.0]
self.task_type = task_type
if isinstance(metrics, Sequence):
self.metrics = metrics
elif isinstance(metrics, Scorer):
self.metrics = [metrics]
else:
raise TypeError(type(metrics))
self.random_state = random_state
self.backend = backend
def fit(
self,
base_models_predictions: np.ndarray | list[np.ndarray],
true_targets: np.ndarray,
model_identifiers: list[tuple[int, int, float]],
runs: Sequence[Run],
X_data: SUPPORTED_FEAT_TYPES | None = None,
) -> AbstractSingleModelEnsemble:
"""Fit the ensemble
Parameters
----------
base_models_predictions: np.ndarray
shape = (n_base_models, n_data_points, n_targets)
n_targets is the number of classes in case of classification,
n_targets is 0 or 1 in case of regression
Can be a list of 2d numpy arrays as well to prevent copying all
predictions into a single, large numpy array.
true_targets : array of shape [n_targets]
model_identifiers : identifier for each base model.
Can be used for practical text output of the ensemble.
runs: Sequence[Run]
Additional information for each run executed by SMAC that was
considered by the ensemble builder.
X_data : list-like | sparse matrix | None = None
Returns
-------
self
"""
return self
def predict(self, predictions: np.ndarray | list[np.ndarray]) -> np.ndarray:
"""Select the predictions of the selected model.
Parameters
----------
base_models_predictions : np.ndarray
shape = (n_base_models, n_data_points, n_targets)
Same as in the fit method.
Returns
-------
np.ndarray
"""
return predictions[0]
def __str__(self) -> str:
return "%s:\n\tMembers: %s" "\n\tWeights: %s\n\tIdentifiers: [%s]" % (
self.__class__.__name__,
self.indices_, # type: ignore [attr-defined]
self.weights_,
self.identifiers_[0], # type: ignore [attr-defined]
)
def get_models_with_weights(
self, models: dict[tuple[int, int, float], BasePipeline]
) -> list[tuple[float, BasePipeline]]:
"""List of (weight, model) pairs for the model selected by this ensemble.
Parameters
----------
models : dict {identifier : model object}
The identifiers are the same as the one presented to the fit()
method. Models can be used for nice printing.
Returns
-------
list[tuple[float, BasePipeline]]
"""
return [(self.weights_[0], models[self.identifiers_[0]])] # type: ignore [attr-defined] # noqa: E501
def get_identifiers_with_weights(
self,
) -> list[tuple[tuple[int, int, float], float]]:
"""Return a (identifier, weight)-pairs for the model selected by this ensemble.
Parameters
----------
models : dict {identifier : model object}
The identifiers are the same as the one presented to the fit()
method. Models can be used for nice printing.
Returns
-------
list[tuple[tuple[int, int, float], float]
"""
return list(zip(self.identifiers_, self.weights_)) # type: ignore [attr-defined] # noqa: E501
def get_selected_model_identifiers(self) -> list[tuple[int, int, float]]:
"""Return identifier of models in the ensemble.
This includes models which have a weight of zero!
Returns
-------
list
"""
return self.identifiers_ # type: ignore [attr-defined]
def get_validation_performance(self) -> float:
"""Return validation performance of ensemble.
In case of multi-objective problem, only the first metric will be returned.
Return
------
float
"""
return self.best_model_score_ # type: ignore [attr-defined]
class SingleModelEnsemble(AbstractSingleModelEnsemble):
"""Ensemble consisting of a single model.
This class is used by the :class:`MultiObjectiveDummyEnsemble` to represent
ensembles consisting of a single model, and this class should not be used
on its own.
Do not use by yourself!
Parameters
----------
task_type: int
An identifier indicating which task is being performed.
metrics: Sequence[Scorer] | Scorer
The metrics used to evaluate the models.
backend : Backend
Gives access to the backend of Auto-sklearn. Not used.
model_index : int
Index of the model that constitutes the ensemble. This index will
be used to select the correct predictions that will be passed during
``fit`` and ``predict``.
random_state: int | RandomState | None = None
Not used.
"""
def __init__(
self,
task_type: int,
metrics: Sequence[Scorer] | Scorer,
backend: Backend,
model_index: int,
random_state: int | np.random.RandomState | None = None,
):
super().__init__(
task_type=task_type,
metrics=metrics,
random_state=random_state,
backend=backend,
)
self.indices_ = [model_index]
def fit(
self,
base_models_predictions: np.ndarray | list[np.ndarray],
true_targets: np.ndarray,
model_identifiers: list[tuple[int, int, float]],
runs: Sequence[Run],
X_data: SUPPORTED_FEAT_TYPES | None = None,
) -> SingleModelEnsemble:
"""Dummy implementation of the ``fit`` method.
Actualy work of passing the model index is done in the constructor. This
method only stores the identifier of the selected model and computes it's
validation loss.
Parameters
----------
base_models_predictions: np.ndarray
shape = (n_base_models, n_data_points, n_targets)
n_targets is the number of classes in case of classification,
n_targets is 0 or 1 in case of regression
Can be a list of 2d numpy arrays as well to prevent copying all
predictions into a single, large numpy array.
true_targets : array of shape [n_targets]
model_identifiers : identifier for each base model.
Can be used for practical text output of the ensemble.
runs: Sequence[Run]
Additional information for each run executed by SMAC that was
considered by the ensemble builder. Not used.
X_data : list-like | spmatrix | None = None
X data to feed to a metric if it requires it
Returns
-------
self
"""
self.identifiers_ = [model_identifiers[self.indices_[0]]]
loss = calculate_losses(
solution=true_targets,
prediction=base_models_predictions[self.indices_[0]],
task_type=self.task_type,
metrics=self.metrics,
X_data=X_data,
)
self.best_model_score_ = loss[self.metrics[0].name]
return self
class SingleBest(AbstractSingleModelEnsemble):
"""Ensemble consisting of the single best model.
Parameters
----------
task_type: int
An identifier indicating which task is being performed.
metrics: Sequence[Scorer] | Scorer
The metrics used to evaluate the models.
random_state: int | RandomState | None = None
Not used.
backend : Backend
Gives access to the backend of Auto-sklearn. Not used.
"""
def __init__(
self,
task_type: int,
metrics: Sequence[Scorer] | Scorer,
backend: Backend,
random_state: int | np.random.RandomState | None = None,
):
super().__init__(
task_type=task_type,
metrics=metrics,
random_state=random_state,
backend=backend,
)
def fit(
self,
base_models_predictions: np.ndarray | list[np.ndarray],
true_targets: np.ndarray,
model_identifiers: list[tuple[int, int, float]],
runs: Sequence[Run],
X_data: SUPPORTED_FEAT_TYPES | None = None,
) -> SingleBest:
"""Select the single best model.
Parameters
----------
base_models_predictions: np.ndarray
shape = (n_base_models, n_data_points, n_targets)
n_targets is the number of classes in case of classification,
n_targets is 0 or 1 in case of regression
Can be a list of 2d numpy arrays as well to prevent copying all
predictions into a single, large numpy array.
true_targets : array of shape [n_targets]
model_identifiers : identifier for each base model.
Can be used for practical text output of the ensemble.
runs: Sequence[Run]
Additional information for each run executed by SMAC that was
considered by the ensemble builder. Not used.
X_data : array-like | sparse matrix | None = None
Returns
-------
self
"""
losses = [
calculate_losses(
solution=true_targets,
prediction=base_model_prediction,
task_type=self.task_type,
metrics=self.metrics,
X_data=X_data,
)[self.metrics[0].name]
for base_model_prediction in base_models_predictions
]
argmin = np.argmin(losses)
self.indices_ = [argmin]
self.identifiers_ = [model_identifiers[argmin]]
self.best_model_score_ = losses[argmin]
return self
class SingleBestFromRunhistory(AbstractSingleModelEnsemble):
"""
In the case of a crash, this class searches
for the best individual model.
Such model is returned as an ensemble of a single
object, to comply with the expected interface of an
AbstractEnsemble.
Do not use by yourself!
"""
def __init__(
self,
task_type: int,
metrics: Sequence[Scorer] | Scorer,
backend: Backend,
run_history: RunHistory,
seed: int,
random_state: int | np.random.RandomState | None = None,
):
super().__init__(
task_type=task_type,
metrics=metrics,
random_state=random_state,
backend=backend,
)
# The seed here is seperate from RandomState and is used to indiicate a
# directory for the backend to search in
self.seed = seed
self.indices_ = [0]
self.weights_ = [1.0]
self.run_history = run_history
self.identifiers_ = self.get_identifiers_from_run_history()
def get_identifiers_from_run_history(self) -> list[tuple[int, int, float]]:
"""Parses the run history, to identify the best performing model
Populates the identifiers attribute, which is used by the backend to access
the actual model.
"""
best_model_identifier = []
best_model_score = self.metrics[0]._worst_possible_result
for run_key in self.run_history.data.keys():
run_value = self.run_history.data[run_key]
print(run_key, run_value)
if len(self.metrics) == 1:
cost = run_value.cost
else:
cost = run_value.cost[0]
score = self.metrics[0]._optimum - (self.metrics[0]._sign * cost)
if (score > best_model_score and self.metrics[0]._sign > 0) or (
score < best_model_score and self.metrics[0]._sign < 0
):
# Make sure that the individual best model actually exists
model_dir = self.backend.get_numrun_directory(
self.seed,
run_value.additional_info["num_run"],
run_key.budget,
)
model_file_name = self.backend.get_model_filename(
self.seed,
run_value.additional_info["num_run"],
run_key.budget,
)
file_path = os.path.join(model_dir, model_file_name)
if not os.path.exists(file_path):
continue
best_model_identifier = [
(
self.seed,
run_value.additional_info["num_run"],
run_key.budget,
)
]
best_model_score = score
if not best_model_identifier:
raise ValueError(
"No valid model found in run history. This means smac was not able to"
" fit a valid model. Please check the log file for errors."
)
self.best_model_score_ = best_model_score
return best_model_identifier