-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathtest_evaluator.py
142 lines (127 loc) · 4.53 KB
/
test_evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# -*- encoding: utf-8 -*-
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import multiprocessing
import numpy as np
from ConfigSpace import Configuration
from smac.tae import StatusType
from autosklearn.automl_common.common.utils.backend import Backend
from autosklearn.evaluation.abstract_evaluator import (
AbstractEvaluator,
_fit_and_suppress_warnings,
)
from autosklearn.metrics import Scorer, calculate_losses
from autosklearn.pipeline.components.base import ThirdPartyComponents
__all__ = ["eval_t", "TestEvaluator"]
class TestEvaluator(AbstractEvaluator):
def __init__(
self,
backend: Backend,
queue: multiprocessing.Queue,
metrics: Sequence[Scorer],
additional_components: Dict[str, ThirdPartyComponents],
port: Optional[int],
configuration: Optional[Union[int, Configuration]] = None,
scoring_functions: Optional[List[Scorer]] = None,
seed: int = 1,
include: Optional[List[str]] = None,
exclude: Optional[List[str]] = None,
disable_file_output: bool = False,
init_params: Optional[Dict[str, Any]] = None,
):
super(TestEvaluator, self).__init__(
backend=backend,
queue=queue,
port=port,
configuration=configuration,
metrics=metrics,
additional_components=additional_components,
scoring_functions=scoring_functions,
seed=seed,
output_y_hat_optimization=False,
num_run=-1,
include=include,
exclude=exclude,
disable_file_output=disable_file_output,
init_params=init_params,
)
self.configuration = configuration
self.X_train = self.datamanager.data["X_train"]
self.Y_train = self.datamanager.data["Y_train"]
self.X_test = self.datamanager.data.get("X_test")
self.Y_test = self.datamanager.data.get("Y_test")
self.model = self._get_model(self.feat_type)
def fit_predict_and_loss(self) -> None:
_fit_and_suppress_warnings(self.logger, self.model, self.X_train, self.Y_train)
loss, Y_pred, _, _ = self.predict_and_loss()
self.finish_up(
loss=loss,
train_loss=None,
opt_pred=Y_pred,
test_pred=None,
file_output=False,
final_call=True,
additional_run_info=None,
status=StatusType.SUCCESS,
)
def predict_and_loss(
self, train: bool = False
) -> Tuple[Union[Dict[str, float], float], np.array, Any, Any]:
if train:
Y_pred = self.predict_function(
self.X_train, self.model, self.task_type, self.Y_train
)
err = calculate_losses(
solution=self.Y_train,
prediction=Y_pred,
task_type=self.task_type,
metrics=self.metrics,
scoring_functions=self.scoring_functions,
)
else:
Y_pred = self.predict_function(
self.X_test, self.model, self.task_type, self.Y_train
)
err = calculate_losses(
solution=self.Y_test,
prediction=Y_pred,
task_type=self.task_type,
metrics=self.metrics,
scoring_functions=self.scoring_functions,
)
return err, Y_pred, None, None
# create closure for evaluating an algorithm
# Has a stupid name so pytest doesn't regard it as a test
def eval_t(
queue: multiprocessing.Queue,
config: Union[int, Configuration],
backend: Backend,
metrics: Sequence[Scorer],
seed: int,
num_run: int,
instance: Dict[str, Any],
scoring_functions: Optional[List[Scorer]],
output_y_hat_optimization: bool,
include: Optional[List[str]],
exclude: Optional[List[str]],
disable_file_output: bool,
port: Optional[int],
additional_components: Dict[str, ThirdPartyComponents],
init_params: Optional[Dict[str, Any]] = None,
budget: Optional[float] = None,
budget_type: Optional[str] = None,
) -> None:
evaluator = TestEvaluator(
configuration=config,
backend=backend,
metrics=metrics,
seed=seed,
port=port,
queue=queue,
scoring_functions=scoring_functions,
include=include,
exclude=exclude,
disable_file_output=disable_file_output,
additional_components=additional_components,
init_params=init_params,
)
evaluator.fit_predict_and_loss()