-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathexample_successive_halving.py
271 lines (235 loc) · 10 KB
/
example_successive_halving.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""
==================
Successive Halving
==================
This advanced example illustrates how to interact with
the SMAC callback and get relevant information from the run, like
the number of iterations. Particularly, it exemplifies how to select
the intensification strategy to use in smac, in this case:
`SuccessiveHalving <http://proceedings.mlr.press/v80/falkner18a/falkner18a-supp.pdf>`_.
This results in an adaptation of the `BOHB algorithm <http://proceedings.mlr.press/v80/falkner18a/falkner18a.pdf>`_.
It uses Successive Halving instead of `Hyperband <https://jmlr.org/papers/volume18/16-558/16-558.pdf>`_, and could be abbreviated as BOSH.
To get the BOHB algorithm, simply import Hyperband and use it as the intensification strategy.
""" # noqa (links are too long)
from pprint import pprint
import sklearn.model_selection
import sklearn.datasets
import sklearn.metrics
import autosklearn.classification
############################################################################
# Define a callback that instantiates SuccessiveHalving
# =====================================================
def get_smac_object_callback(budget_type):
def get_smac_object(
scenario_dict,
seed,
ta,
ta_kwargs,
metalearning_configurations,
n_jobs,
dask_client,
multi_objective_algorithm, # This argument will be ignored as SH does not yet support multi-objective optimization
multi_objective_kwargs,
):
from smac.facade.smac_ac_facade import SMAC4AC
from smac.intensification.successive_halving import SuccessiveHalving
from smac.runhistory.runhistory2epm import RunHistory2EPM4LogCost
from smac.scenario.scenario import Scenario
if n_jobs > 1 or (dask_client and len(dask_client.nthreads()) > 1):
raise ValueError(
"Please make sure to guard the code invoking Auto-sklearn by "
"`if __name__ == '__main__'` and remove this exception."
)
scenario = Scenario(scenario_dict)
if len(metalearning_configurations) > 0:
default_config = scenario.cs.get_default_configuration()
initial_configurations = [default_config] + metalearning_configurations
else:
initial_configurations = None
rh2EPM = RunHistory2EPM4LogCost
ta_kwargs["budget_type"] = budget_type
return SMAC4AC(
scenario=scenario,
rng=seed,
runhistory2epm=rh2EPM,
tae_runner=ta,
tae_runner_kwargs=ta_kwargs,
initial_configurations=initial_configurations,
run_id=seed,
intensifier=SuccessiveHalving,
intensifier_kwargs={
"initial_budget": 10.0,
"max_budget": 100,
"eta": 2,
"min_chall": 1,
},
n_jobs=n_jobs,
dask_client=dask_client,
)
return get_smac_object
############################################################################
# Data Loading
# ============
X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
X, y, random_state=1, shuffle=True
)
############################################################################
# Build and fit a classifier
# ==========================
automl = autosklearn.classification.AutoSklearnClassifier(
time_left_for_this_task=40,
per_run_time_limit=10,
tmp_folder="/tmp/autosklearn_sh_example_tmp",
disable_evaluator_output=False,
# 'holdout' with 'train_size'=0.67 is the default argument setting
# for AutoSklearnClassifier. It is explicitly specified in this example
# for demonstrational purpose.
resampling_strategy="holdout",
resampling_strategy_arguments={"train_size": 0.67},
include={
"classifier": [
"extra_trees",
"gradient_boosting",
"random_forest",
"sgd",
"passive_aggressive",
],
"feature_preprocessor": ["no_preprocessing"],
},
get_smac_object_callback=get_smac_object_callback("iterations"),
)
automl.fit(X_train, y_train, dataset_name="breast_cancer")
pprint(automl.show_models(), indent=4)
predictions = automl.predict(X_test)
# Print statistics about the auto-sklearn run such as number of
# iterations, number of models failed with a time out.
print(automl.sprint_statistics())
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, predictions))
############################################################################
# We can also use cross-validation with successive halving
# ========================================================
X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
X, y, random_state=1, shuffle=True
)
automl = autosklearn.classification.AutoSklearnClassifier(
time_left_for_this_task=40,
per_run_time_limit=10,
tmp_folder="/tmp/autosklearn_sh_example_tmp_01",
disable_evaluator_output=False,
resampling_strategy="cv",
include={
"classifier": [
"extra_trees",
"gradient_boosting",
"random_forest",
"sgd",
"passive_aggressive",
],
"feature_preprocessor": ["no_preprocessing"],
},
get_smac_object_callback=get_smac_object_callback("iterations"),
)
automl.fit(X_train, y_train, dataset_name="breast_cancer")
# Print the final ensemble constructed by auto-sklearn.
pprint(automl.show_models(), indent=4)
automl.refit(X_train, y_train)
predictions = automl.predict(X_test)
# Print statistics about the auto-sklearn run such as number of
# iterations, number of models failed with a time out.
print(automl.sprint_statistics())
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, predictions))
############################################################################
# Use an iterative fit cross-validation with successive halving
# =============================================================
X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
X, y, random_state=1, shuffle=True
)
automl = autosklearn.classification.AutoSklearnClassifier(
time_left_for_this_task=40,
per_run_time_limit=10,
tmp_folder="/tmp/autosklearn_sh_example_tmp_cv_02",
disable_evaluator_output=False,
resampling_strategy="cv-iterative-fit",
include={
"classifier": [
"extra_trees",
"gradient_boosting",
"random_forest",
"sgd",
"passive_aggressive",
],
"feature_preprocessor": ["no_preprocessing"],
},
get_smac_object_callback=get_smac_object_callback("iterations"),
)
automl.fit(X_train, y_train, dataset_name="breast_cancer")
# Print the final ensemble constructed by auto-sklearn.
pprint(automl.show_models(), indent=4)
automl.refit(X_train, y_train)
predictions = automl.predict(X_test)
# Print statistics about the auto-sklearn run such as number of
# iterations, number of models failed with a time out.
print(automl.sprint_statistics())
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, predictions))
############################################################################
# Next, we see the use of subsampling as a budget in Auto-sklearn
# ===============================================================
X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
X, y, random_state=1, shuffle=True
)
automl = autosklearn.classification.AutoSklearnClassifier(
time_left_for_this_task=40,
per_run_time_limit=10,
tmp_folder="/tmp/autosklearn_sh_example_tmp_03",
disable_evaluator_output=False,
# 'holdout' with 'train_size'=0.67 is the default argument setting
# for AutoSklearnClassifier. It is explicitly specified in this example
# for demonstrational purpose.
resampling_strategy="holdout",
resampling_strategy_arguments={"train_size": 0.67},
get_smac_object_callback=get_smac_object_callback("subsample"),
)
automl.fit(X_train, y_train, dataset_name="breast_cancer")
# Print the final ensemble constructed by auto-sklearn.
pprint(automl.show_models(), indent=4)
predictions = automl.predict(X_test)
# Print statistics about the auto-sklearn run such as number of
# iterations, number of models failed with a time out.
print(automl.sprint_statistics())
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, predictions))
############################################################################
# Mixed budget approach
# =====================
# Finally, there's a mixed budget type which uses iterations where possible and
# subsamples otherwise
X, y = sklearn.datasets.load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = sklearn.model_selection.train_test_split(
X, y, random_state=1, shuffle=True
)
automl = autosklearn.classification.AutoSklearnClassifier(
time_left_for_this_task=40,
per_run_time_limit=10,
tmp_folder="/tmp/autosklearn_sh_example_tmp_04",
disable_evaluator_output=False,
# 'holdout' with 'train_size'=0.67 is the default argument setting
# for AutoSklearnClassifier. It is explicitly specified in this example
# for demonstrational purpose.
resampling_strategy="holdout",
resampling_strategy_arguments={"train_size": 0.67},
include={
"classifier": ["extra_trees", "gradient_boosting", "random_forest", "sgd"]
},
get_smac_object_callback=get_smac_object_callback("mixed"),
)
automl.fit(X_train, y_train, dataset_name="breast_cancer")
# Print the final ensemble constructed by auto-sklearn.
pprint(automl.show_models(), indent=4)
predictions = automl.predict(X_test)
# Print statistics about the auto-sklearn run such as number of
# iterations, number of models failed with a time out.
print(automl.sprint_statistics())
print("Accuracy score", sklearn.metrics.accuracy_score(y_test, predictions))