-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathtest_metadata_generation.py
384 lines (348 loc) · 13.8 KB
/
test_metadata_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import json
import os
import random
import shutil
import socket
import subprocess
import tempfile
import arff
import numpy as np
from autosklearn.metrics import CLASSIFICATION_METRICS, REGRESSION_METRICS
import unittest
# Abstracted to here to make changing them easier
# seems to be quite fidely with github actions
# Recommended to set a minimum of 60
timeouts = {
1: 60, # create commands
2: 180, # generate metadata
3: 60, # get performance of configurations
4: 90, # Calculate metafeatures
5: 60, # Create aslib files
}
class TestMetadataGeneration(unittest.TestCase):
def setUp(self):
host = socket.gethostname()
pid = os.getpid()
rint = random.randint(0, 1000000)
self.working_directory = os.path.join(
tempfile.gettempdir(), f"autosklearn-unittest-tmp-dir-{host}-{pid}-{rint}"
)
def print_files(self):
print("Existing files:")
for dirpath, dirnames, filenames in os.walk(self.working_directory):
print(dirpath, dirnames, filenames)
def test_metadata_generation(self):
regression_task_id = 360029
regression_dataset_name = "SWD".lower()
classification_task_id = 245
classification_dataset_name = "breast-w".lower()
current_directory = __file__
scripts_directory = os.path.abspath(
os.path.join(current_directory, "..", "..", "..", "scripts")
)
# 1. create working directory
try:
os.makedirs(self.working_directory)
except Exception as e:
print(e)
# 2. should be done by the person running the unit tests!
# 3. create configuration commands
script_filename = os.path.join(scripts_directory, "01_create_commands.py")
cmd = "python3 %s --working-directory %s --test" % (
script_filename,
self.working_directory,
)
return_value = subprocess.run(
cmd,
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
timeout=30,
)
self.assertEqual(return_value.returncode, 0, msg=f"{cmd}\n{str(return_value)}")
# 4. run one of the commands to get some data
commands_output_file = os.path.join(
self.working_directory, "metadata_commands.txt"
)
self.assertTrue(os.path.exists(commands_output_file))
with open(commands_output_file) as fh:
cmds = fh.read().split("\n")
# 6 regression, 7 classification (roc_auc + task 258 is illegal),
# 1 empty line
self.assertEqual(len(cmds), 18, msg="\n".join(cmds))
for task_id, dataset_name, task_type, metric in (
(
classification_task_id,
classification_dataset_name,
"classification",
"balanced_accuracy",
),
(regression_task_id, regression_dataset_name, "regression", "r2"),
):
cmd = None
with open(commands_output_file) as fh:
while True:
cmd = fh.readline()
if "task-id %d" % task_id in cmd and metric in cmd:
break
if cmd is None:
self.fail(
"Did not find a command for task_id %s and metric %s in %s"
% (task_id, metric, cmds)
)
self.assertIn("time-limit 86400", cmd)
self.assertIn("per-run-time-limit 1800", cmd)
cmd = cmd.replace("time-limit 86400", "time-limit 60").replace(
"per-run-time-limit 1800", "per-run-time-limit 5"
)
# This tells the script to use the same memory limit for testing as
# for training. In production, it would use twice as much!
cmd = cmd.replace("-s 1", "-s 1 --unittest")
print("COMMAND: %s" % cmd)
return_value = subprocess.run(
cmd,
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
timeout=180,
)
print("STDOUT: %s" % repr(return_value.stdout), flush=True)
print("STDERR: %s" % repr(return_value.stderr), flush=True)
self.print_files()
expected_output_directory = os.path.join(
self.working_directory,
"configuration",
task_type,
str(task_id),
metric,
"auto-sklearn-output",
)
self.assertTrue(
os.path.exists(expected_output_directory), msg=expected_output_directory
)
smac_log = os.path.join(
expected_output_directory, "AutoML(1):%s.log" % dataset_name
)
with open(smac_log) as fh:
smac_output = fh.read()
self.assertEqual(
return_value.returncode,
0,
msg=f"{cmd}\n{str(return_value)}" + "\n" + smac_output,
)
expected_validation_output = os.path.join(
expected_output_directory, "..", "validation_trajectory_1.json"
)
self.assertTrue(os.path.exists(expected_validation_output))
trajectory = os.path.join(
expected_output_directory, "smac3-output", "run_1", "trajectory.json"
)
with open(expected_validation_output) as fh_validation:
with open(trajectory) as fh_trajectory:
traj = json.load(fh_trajectory)
valid_traj = json.load(fh_validation)
print("Validation trajectory:")
print(valid_traj)
self.assertGreater(len(traj), 2, msg=str(valid_traj))
self.assertEqual(len(traj), len(valid_traj), msg=str(valid_traj))
for entry in valid_traj:
if task_type == "classification":
for metric in CLASSIFICATION_METRICS:
# This is a multilabel metric
if metric in (
"precision_samples",
"recall_samples",
"f1_samples",
):
continue
self.assertIn(metric, entry[-1])
self.assertIsInstance(entry[-1][metric], float)
self.assertTrue(
np.isfinite(entry[-1][metric]),
(metric, str(entry[-1][metric])),
)
else:
for metric in REGRESSION_METRICS:
self.assertIn(metric, entry[-1])
self.assertIsInstance(entry[-1][metric], float)
self.assertTrue(
np.isfinite(entry[-1][metric]),
(metric, str(entry[-1][metric])),
)
# 5. Get the test performance of these configurations
script_filename = os.path.join(scripts_directory, "02_retrieve_metadata.py")
cmd = "python3 %s --working-directory %s " % (
script_filename,
self.working_directory,
)
print("COMMAND: %s" % cmd)
return_value = subprocess.run(
cmd,
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
timeout=60,
)
print("STDOUT: %s" % repr(return_value.stdout), flush=True)
print("STDERR: %s" % repr(return_value.stderr), flush=True)
self.assertEqual(return_value.returncode, 0, msg=f"{cmd}\n{str(return_value)}")
for file in [
"algorithm_runs.arff",
"configurations.csv",
"description.results.txt",
]:
for metric in ["accuracy", "balanced_accuracy", "log_loss", "roc_auc"]:
path = os.path.join(
self.working_directory,
"configuration_results",
"%s_binary.classification_dense" % metric,
file,
)
self.assertTrue(os.path.exists(path), msg=path)
for file in [
"algorithm_runs.arff",
"configurations.csv",
"description.results.txt",
]:
for metric in ["r2", "mean_squared_error"]:
path = os.path.join(
self.working_directory,
"configuration_results",
"%s_regression_dense" % metric,
file,
)
self.assertTrue(os.path.exists(path), msg=path)
# 6. Calculate metafeatures
script_filename = os.path.join(
scripts_directory, "03_calculate_metafeatures.py"
)
cmd = "python3 %s --working-directory %s --test-mode " % (
script_filename,
self.working_directory,
)
return_value = subprocess.run(
cmd,
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
timeout=180,
)
self.assertEqual(return_value.returncode, 0, msg=f"{cmd}\n{str(return_value)}")
for task_type in ("classification", "regression"):
for file in [
"calculation_times.csv",
"description.features.txt",
"feature_costs.arff",
"feature_runstatus.arff",
"feature_values.arff",
]:
self.assertTrue(
os.path.exists(
os.path.join(
self.working_directory, "metafeatures", task_type, file
)
)
)
with open(
os.path.join(
self.working_directory,
"metafeatures",
"regression",
"feature_values.arff",
)
) as fh:
metafeatures_arff = fh.read().split("\n")
contains_regression_id = False
for line in metafeatures_arff:
if line.startswith("fri_c4_500_25,"):
contains_regression_id = True
self.assertTrue(contains_regression_id, msg=metafeatures_arff)
with open(
os.path.join(
self.working_directory,
"metafeatures",
"classification",
"feature_values.arff",
)
) as fh:
metafeatures_arff = fh.read().split("\n")
contains_classification_id = False
for line in metafeatures_arff:
if line.startswith("anneal,"):
contains_classification_id = True
self.assertTrue(contains_classification_id, msg=metafeatures_arff)
# 7. Create aslib files
script_filename = os.path.join(scripts_directory, "04_create_aslib_files.py")
cmd = "python3 %s --working-directory %s " % (
script_filename,
self.working_directory,
)
return_value = subprocess.run(
cmd,
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
timeout=45,
)
self.assertEqual(return_value.returncode, 0, msg=f"{cmd}\n{str(return_value)}")
for metric_, combination in (
(metric, "%s_binary.classification_dense" % metric),
(metric, "%s_regression_dense" % metric),
):
if task_type not in combination:
continue
for file in [
"algorithm_runs.arff",
"configurations.csv",
"description.txt",
"feature_costs.arff",
"feature_runstatus.arff",
"feature_values.arff",
"readme.txt",
]:
expected_path = os.path.join(
self.working_directory,
"metadata",
combination,
file,
)
self.assertTrue(os.path.exists(expected_path), msg=expected_path)
with open(
os.path.join(
self.working_directory,
"metadata",
combination,
"algorithm_runs.arff",
)
) as fh:
algorithm_runs = arff.load(fh)
self.assertEqual(
algorithm_runs["attributes"],
[
("instance_id", "STRING"),
("repetition", "NUMERIC"),
("algorithm", "STRING"),
(metric_, "NUMERIC"),
(
"runstatus",
[
"ok",
"timeout",
"memout",
"not_applicable",
"crash",
"other",
],
),
],
)
self.assertEqual(len(algorithm_runs["data"]), 1)
self.assertEqual(len(algorithm_runs["data"][0]), 5)
self.assertLess(algorithm_runs["data"][0][3], 0.9)
self.assertEqual(algorithm_runs["data"][0][4], "ok")
def tearDown(self):
for i in range(5):
try:
shutil.rmtree(self.working_directory)
except Exception:
pass