Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Amount of data for training #6

Closed
Raj800 opened this issue Nov 19, 2018 · 7 comments
Closed

Amount of data for training #6

Raj800 opened this issue Nov 19, 2018 · 7 comments

Comments

@Raj800
Copy link

Raj800 commented Nov 19, 2018

How much data is required in general for training?
Also, if possible, can you share the pretrained weights file?

@alex-service-ml
Copy link

I doubt you'll get a response on the weights file; I've asked before and didn't receive a response; after looking into it, I think the data being trained on might be under NDA or otherwise not available for the public, so it's unlikely the trained model will be shared. Depending on what you want to do, I recommend checking out COWC (Cars Overhead With Context), SpaceNet, or xView as possible datasets. In my experience, a couple hundred samples will start to get some good results, although you'll probably spend a lot of time preprocessing the data to figure out what works well for you.

@Raj800
Copy link
Author

Raj800 commented Nov 19, 2018

I have started training for 700 objects of 1 category only for 60,000 epochs, Lets hope it works!
It took around 6 hours for 700 epochs, so its gonna take lot of time.

@avanetten
Copy link
Owner

We've been busy updating the code and writing papers, and updated examples (and weights) will be uploaded in the near future. In the meantime, Table 2 and 3 of https://arxiv.org/abs/1805.09512 give an idea of what you can expect for performance versus training size.

@alex-service-ml
Copy link

That's awesome to hear!

@Raj800
Copy link
Author

Raj800 commented Nov 20, 2018

That's Great!

@Raj800
Copy link
Author

Raj800 commented Nov 20, 2018

Just to make sure I am not doing something wrong,
Can you take a look at this log?
Batch Num: 3363 / 60000
3363: 0.000835, 0.004495 avg, 0.001000 rate, 49.680988 seconds, 215232 images
Loaded: 122.635376 seconds
Batch Num: 3364 / 60000
3364: 0.001208, 0.004166 avg, 0.001000 rate, 49.414196 seconds, 215296 images
Loaded: 124.553726 seconds
Batch Num: 3365 / 60000
bj: 0.000926, No Obj: 0.000978, Avg Recall: 0.000000, count: 1
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: 0.032712, Class: 0.976418, Obj: 0.000913, No Obj: 0.000979, Avg Recall: 0.000000, count: 1
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000978, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: 0.509558, Class: 0.976279, Obj: 0.000927, No Obj: 0.000979, Avg Recall: 1.000000, count: 1
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: 0.072283, Class: 0.976911, Obj: 0.000909, No Obj: 0.000979, Avg Recall: 0.000000, count: 2
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000978, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000977, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000978, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000978, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000978, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000978, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000978, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000978, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000978, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000978, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000978, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000978, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000978, Avg Recall: -nan, count: 0
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count: 0
Region Avg IOU: 0.000000, Class: 0.977706, Obj: 0.000875, No Obj: 0.000978, Avg Recall: 0.000000, count: 1
Region Avg IOU: 0.000000, Class: 0.976226, Obj: 0.000937, No Obj: 0.000977, Avg Recall: 0.000000, count: 1
Region Avg IOU: -nan, Class: -nan, Obj: -nan, No Obj: 0.000979, Avg Recall: -nan, count3365: 0.001845, 0.003934 avg, 0.001000 rate, 49.724026 seconds, 215360 images

@avanetten
Copy link
Owner

Give the https://github.com/avanetten/simrdwn/blob/master/core/prep_data_cowc.py a try, hopefully this will clear up your nans issue. As for how much training data you need, often only a few dozen is enough (see https://arxiv.org/pdf/1805.09512, Table 2).

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants