forked from TorontoDeepLearning/convnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathedge.py
218 lines (184 loc) · 7.82 KB
/
edge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from util import *
from google.protobuf import text_format
import convnet_config_pb2
def ChooseEdge(edge_proto):
if edge_proto.edge_type == convnet_config_pb2.Edge.CONVOLUTIONAL:
return ConvEdge(edge_proto)
elif edge_proto.edge_type == convnet_config_pb2.Edge.CONV_ONETOONE:
return ConvOneToOneEdge(edge_proto)
elif edge_proto.edge_type == convnet_config_pb2.Edge.FC:
return FCEdge(edge_proto)
elif edge_proto.edge_type == convnet_config_pb2.Edge.MAXPOOL:
return MaxPoolEdge(edge_proto)
elif edge_proto.edge_type == convnet_config_pb2.Edge.RESPONSE_NORM:
return ResponseNormEdge(edge_proto)
else:
raise Exception('Edge type not implemented.')
def CreateConvDesc(num_input_channels, num_output_channels, edge_proto):
return cm.GetConvDesc(num_input_channels, num_output_channels,
edge_proto.kernel_size, edge_proto.kernel_size,
edge_proto.stride, edge_proto.stride,
edge_proto.padding, edge_proto.padding)
class Edge(object):
def __init__(self, edge_proto):
self.source_name_ = edge_proto.source
self.dest_name_ = edge_proto.dest
self.num_modules_y_ = 1
self.num_modules_x_ = 1
self.name_ = '%s:%s' % (self.source_name_, self.dest_name_)
def SetSource(self, l):
self.source_ = l
self.num_input_channels_ = l.GetNumChannels()
def SetDest(self, l):
self.dest_ = l
self.num_output_channels_ = l.GetNumChannels()
def GetSourceName(self):
return self.source_name_
def GetDestName(self):
return self.dest_name_
def GetSource(self):
return self.source_
def GetDest(self):
return self.dest_
def SetImageSize(self, image_size_y, image_size_x):
self.image_size_y_ = image_size_y
self.image_size_x_ = image_size_x
self.num_modules_y_ = 1
self.num_modules_x_ = 1
def GetNumModules(self):
return self.num_modules_y_, self.num_modules_x_
def AllocateMemory(self):
pass
def LoadParams(self, f):
pass
def ComputeUp(self, input_layer, output_layer, overwrite):
pass
class EdgeWithWeight(Edge):
def __init__(self, edge_proto):
super(EdgeWithWeight, self).__init__(edge_proto)
self.weights_ = None
self.bias_ = None
def LoadParams(self, f):
w_name = '%s:weight' % self.name_
w = f[w_name].value.T
assert self.weights_.shape == w.shape, "Shape mismatch %s %s %s" % (w_name, self.weights_.shape, w.shape)
self.weights_.overwrite(w)
b_name = '%s:bias' % self.name_
b = f[b_name].value.reshape(1, -1)
assert self.bias_.shape == b.shape, "Shape mismatch %s" % (b_name, self.bias_.shape, b.shape)
self.bias_.overwrite(b)
class ConvEdge(EdgeWithWeight):
def __init__(self, edge_proto):
super(ConvEdge, self).__init__(edge_proto)
self.shared_bias_ = edge_proto.shared_bias
self.edge_proto_ = edge_proto
def SetImageSize(self, image_size_y, image_size_x):
self.conv_desc_ = CreateConvDesc(self.num_input_channels_,
self.num_output_channels_,
self.edge_proto_)
self.image_size_y_ = image_size_y
self.image_size_x_ = image_size_x
self.num_modules_y_, self.num_modules_x_ = cm.GetOutputShape(image_size_y, image_size_x, self.conv_desc_)
def AllocateMemory(self):
input_size = self.conv_desc_.kernel_size_x * self.conv_desc_.kernel_size_y * self.num_input_channels_
if self.shared_bias_:
bias_locs = 1
else:
bias_locs = self.num_modules_y_ * self.num_modules_x_
if self.weights_ is not None:
self.weights_.free_device_memory()
if self.bias_ is not None:
self.bias_.free_device_memory()
self.weights_ = cm.empty((self.num_output_channels_, input_size))
self.bias_ = cm.empty((1, self.num_output_channels_ * bias_locs))
self.weights_.set_shape4d(
(self.num_output_channels_, self.conv_desc_.kernel_size_x,
self.conv_desc_.kernel_size_y, self.num_input_channels_))
def ComputeUp(self, input_layer, output_layer, overwrite):
scale_targets = 0 if overwrite else 1
w = self.weights_
b = self.bias_
input_state = input_layer.GetState()
output_state = output_layer.GetState()
batch_size = input_state.shape[0]
cc_gemm.convUp(input_state, w, output_state, self.conv_desc_, scale_targets)
if self.shared_bias_:
output_state.reshape((-1, self.num_output_channels_))
output_state.add_row_vec(b)
if self.shared_bias_:
output_state.reshape((batch_size, -1))
class MaxPoolEdge(Edge):
def __init__(self, edge_proto):
super(MaxPoolEdge, self).__init__(edge_proto)
self.edge_proto_ = edge_proto
def SetImageSize(self, image_size_y, image_size_x):
self.conv_desc_ = CreateConvDesc(self.num_input_channels_,
self.num_output_channels_,
self.edge_proto_)
self.image_size_y_ = image_size_y
self.image_size_x_ = image_size_x
self.num_modules_y_, self.num_modules_x_ = cm.GetOutputShape(image_size_y, image_size_x, self.conv_desc_)
def ComputeUp(self, input_layer, output_layer, overwrite):
input_state = input_layer.GetState()
output_state = output_layer.GetState()
cc_gemm.MaxPool(input_state, output_state, self.conv_desc_)
class ResponseNormEdge(Edge):
def __init__(self, edge_proto):
super(ResponseNormEdge, self).__init__(edge_proto)
self.num_filters_response_norm_ = 0
self.blocked_ = edge_proto.response_norm_in_blocks
self.add_scale_ = edge_proto.add_scale
self.pow_scale_ = edge_proto.pow_scale
self.frac_ = edge_proto.frac_of_filters_response_norm
def SetImageSize(self, image_size_y, image_size_x):
self.image_size_y_ = image_size_y
self.image_size_x_ = image_size_x
self.num_modules_y_ = image_size_y
self.num_modules_x_ = image_size_x
self.num_filters_response_norm_ = int(self.frac_ * self.num_input_channels_)
def ComputeUp(self, input_layer, output_layer, overwrite):
input_state = input_layer.GetState()
output_state = output_layer.GetState()
cc_gemm.ResponseNormCrossMap(
input_state, output_state, self.num_filters_response_norm_,
self.add_scale_, self.pow_scale_, self.blocked_)
class FCEdge(EdgeWithWeight):
def __init__(self, edge_proto):
super(FCEdge, self).__init__(edge_proto)
def AllocateMemory(self):
input_size = self.image_size_x_ * self.image_size_y_ * self.num_input_channels_
self.weights_ = cm.empty((self.num_output_channels_, input_size))
self.bias_ = cm.empty((1, self.num_output_channels_))
def ComputeUp(self, input_layer, output_layer, overwrite):
scale_targets = 0 if overwrite else 1
input_state = input_layer.GetState()
output_state = output_layer.GetState()
w = self.weights_
b = self.bias_
cm.dot(input_state, w.T, target=output_state, scale_targets=scale_targets)
output_state.add_row_vec(b)
class ConvOneToOneEdge(EdgeWithWeight):
def __init__(self, edge_proto):
super(ConvOneToOneEdge, self).__init__(edge_proto)
def SetImageSize(self, image_size_y, image_size_x):
self.image_size_y_ = image_size_y
self.image_size_x_ = image_size_x
self.num_modules_y_ = image_size_y
self.num_modules_x_ = image_size_x
def AllocateMemory(self):
self.weights_ = cm.empty((self.num_output_channels_,
self.num_input_channels_))
self.bias_ = cm.empty((1, self.num_output_channels_))
def ComputeUp(self, input_layer, output_layer, overwrite):
scale_targets = 0 if overwrite else 1
w = self.weights_
b = self.bias_
input_state = input_layer.GetState()
output_state = output_layer.GetState()
batch_size = input_state.shape[0]
input_state.reshape((-1, self.num_input_channels_))
output_state.reshape((-1, self.num_output_channels_))
cm.dot(input_state, w.T, target=output_state, scale_targets=scale_targets)
output_state.add_row_vec(b)
input_state.reshape((batch_size, -1))
output_state.reshape((batch_size, -1))