forked from TorontoDeepLearning/convnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
34 lines (31 loc) · 829 Bytes
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy as np
import cudamat as cm
#from cudamat import cudamat_conv as cc
from cudamat import cudamat_conv_gemm as cc_gemm
import conv_cpu
import sys
import h5py
from time import sleep
"""
This script uses the GPU locking system used at University of Toronto.
Please modify this accordingly for your GPU resource environment.
"""
from cudamat import gpu_lock2 as gpu_lock
def LockGPU(max_retries=10):
""" Locks a free GPU board and returns its id. """
for retry_count in range(max_retries):
board = gpu_lock.obtain_lock_id()
if board != -1:
break
sleep(1)
if board == -1:
print 'No GPU board available.'
sys.exit(1)
else:
cm.cuda_set_device(board)
cm.cublas_init()
return board
def FreeGPU(board):
""" Frees the board. """
cm.cublas_shutdown()
gpu_lock.free_lock(board)