-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathconftest.py
811 lines (627 loc) · 24.9 KB
/
conftest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
from __future__ import absolute_import
import json
import os
import pathlib
import boto3
import pytest
import tests.integ
from botocore.config import Config
from packaging.version import Version
from packaging.specifiers import SpecifierSet
from sagemaker import Session, image_uris, utils, get_execution_role
from sagemaker.local import LocalSession
from sagemaker.workflow.pipeline_context import PipelineSession, LocalPipelineSession
DEFAULT_REGION = "us-west-2"
CUSTOM_BUCKET_NAME_PREFIX = "sagemaker-custom-bucket"
CUSTOM_S3_OBJECT_KEY_PREFIX = "session-default-prefix"
NO_M4_REGIONS = [
"eu-west-3",
"eu-north-1",
"ap-east-1",
"ap-northeast-1", # it has m4.xl, but not enough in all AZs
"sa-east-1",
"me-south-1",
]
NO_P3_REGIONS = [
"af-south-1",
"ap-east-1",
"ap-southeast-1", # it has p3, but not enough
"ap-southeast-2", # it has p3, but not enough
"ca-central-1", # it has p3, but not enough
"eu-central-1", # it has p3, but not enough
"eu-north-1",
"eu-west-2", # it has p3, but not enough
"eu-west-3",
"eu-south-1",
"me-south-1",
"sa-east-1",
"us-west-1",
"ap-south-1", # no p3 availability
]
NO_T2_REGIONS = ["eu-north-1", "ap-east-1", "me-south-1"]
FRAMEWORKS_FOR_GENERATED_VERSION_FIXTURES = (
"chainer",
"coach_mxnet",
"coach_tensorflow",
"inferentia_mxnet",
"inferentia_tensorflow",
"inferentia_pytorch",
"mxnet",
"neo_mxnet",
"neo_pytorch",
"neo_tensorflow",
"pytorch",
"pytorch_training_compiler",
"ray_pytorch",
"ray_tensorflow",
"sklearn",
"tensorflow",
"vw",
"xgboost",
"spark",
"huggingface",
"autogluon",
"huggingface_training_compiler",
)
PYTORCH_RENEWED_GPU = "ml.g4dn.xlarge"
image_uris_unit_tests_dir = pathlib.Path("tests/unit/sagemaker/image_uris")
def pytest_collection_modifyitems(config, items):
for item in items:
testmod = pathlib.Path(item.fspath)
if config.rootdir / image_uris_unit_tests_dir in testmod.parents:
item.add_marker(pytest.mark.image_uris_unit_test)
def pytest_addoption(parser):
parser.addoption("--sagemaker-client-config", action="store", default=None)
parser.addoption("--sagemaker-runtime-config", action="store", default=None)
parser.addoption("--boto-config", action="store", default=None)
parser.addoption("--sagemaker-metrics-config", action="store", default=None)
def pytest_configure(config):
bc = config.getoption("--boto-config")
parsed = json.loads(bc) if bc else {}
region = parsed.get("region_name", boto3.session.Session().region_name)
if region:
os.environ["TEST_AWS_REGION_NAME"] = region
@pytest.fixture(scope="session")
def sagemaker_client_config(request):
config = request.config.getoption("--sagemaker-client-config")
return json.loads(config) if config else dict()
@pytest.fixture(scope="session")
def sagemaker_runtime_config(request):
config = request.config.getoption("--sagemaker-runtime-config")
return json.loads(config) if config else None
@pytest.fixture(scope="session")
def sagemaker_metrics_config(request):
config = request.config.getoption("--sagemaker-metrics-config")
return json.loads(config) if config else None
@pytest.fixture(scope="session")
def boto_session(request):
config = request.config.getoption("--boto-config")
if config:
return boto3.Session(**json.loads(config))
else:
return boto3.Session(region_name=DEFAULT_REGION)
@pytest.fixture(scope="session")
def account(boto_session):
return boto_session.client("sts").get_caller_identity()["Account"]
@pytest.fixture(scope="session")
def region(boto_session):
return boto_session.region_name
@pytest.fixture(scope="session")
def sagemaker_session(
sagemaker_client_config, sagemaker_runtime_config, boto_session, sagemaker_metrics_config
):
sagemaker_client_config.setdefault("config", Config(retries=dict(max_attempts=10)))
sagemaker_client = (
boto_session.client("sagemaker", **sagemaker_client_config)
if sagemaker_client_config
else None
)
runtime_client = (
boto_session.client("sagemaker-runtime", **sagemaker_runtime_config)
if sagemaker_runtime_config
else None
)
metrics_client = (
boto_session.client("sagemaker-metrics", **sagemaker_metrics_config)
if sagemaker_metrics_config
else None
)
return Session(
boto_session=boto_session,
sagemaker_client=sagemaker_client,
sagemaker_runtime_client=runtime_client,
sagemaker_metrics_client=metrics_client,
sagemaker_config={},
default_bucket_prefix=CUSTOM_S3_OBJECT_KEY_PREFIX,
)
@pytest.fixture(scope="session")
def sagemaker_local_session(boto_session):
return LocalSession(boto_session=boto_session)
@pytest.fixture(scope="session")
def pipeline_session(boto_session):
return PipelineSession(boto_session=boto_session)
@pytest.fixture(scope="session")
def local_pipeline_session(boto_session):
return LocalPipelineSession(boto_session=boto_session)
@pytest.fixture(scope="session")
def execution_role(sagemaker_session):
return get_execution_role(sagemaker_session)
@pytest.fixture(scope="module")
def custom_bucket_name(boto_session):
region = boto_session.region_name
account = boto_session.client(
"sts", region_name=region, endpoint_url=utils.sts_regional_endpoint(region)
).get_caller_identity()["Account"]
return "{}-{}-{}".format(CUSTOM_BUCKET_NAME_PREFIX, region, account)
@pytest.fixture(scope="module", params=["py2", "py3"])
def chainer_py_version(request):
return request.param
@pytest.fixture(scope="module", params=["py2", "py3"])
def mxnet_inference_py_version(mxnet_inference_version, request):
if Version(mxnet_inference_version) < Version("1.7.0"):
return request.param
elif Version(mxnet_inference_version) == Version("1.8.0"):
return "py37"
elif Version(mxnet_inference_version) == Version("1.9.0"):
return "py38"
else:
return "py3"
@pytest.fixture(scope="module", params=["py2", "py3"])
def mxnet_training_py_version(mxnet_training_version, request):
if Version(mxnet_training_version) < Version("1.7.0"):
return request.param
elif Version(mxnet_training_version) == Version("1.8.0"):
return "py37"
elif Version(mxnet_training_version) == Version("1.9.0"):
return "py38"
else:
return "py3"
@pytest.fixture(scope="module", params=["py2", "py3"])
def mxnet_eia_py_version(mxnet_eia_version, request):
if Version(mxnet_eia_version) < Version("1.7.0"):
return request.param
else:
return "py3"
@pytest.fixture(scope="module")
def mxnet_eia_latest_py_version():
return "py3"
@pytest.fixture(scope="module", params=["py2", "py3"])
def pytorch_training_py_version(pytorch_training_version, request):
if Version(pytorch_training_version) >= Version("2.6"):
return "py312"
if Version(pytorch_training_version) >= Version("2.3"):
return "py311"
elif Version(pytorch_training_version) >= Version("2.0"):
return "py310"
elif Version(pytorch_training_version) >= Version("1.13"):
return "py39"
elif Version(pytorch_training_version) >= Version("1.9"):
return "py38"
elif Version(pytorch_training_version) >= Version("1.5.0"):
return "py3"
else:
return request.param
@pytest.fixture(scope="module", params=["py2", "py3"])
def pytorch_inference_py_version(pytorch_inference_version, request):
if Version(pytorch_inference_version) >= Version("2.6"):
return "py312"
elif Version(pytorch_inference_version) >= Version("2.3"):
return "py311"
elif Version(pytorch_inference_version) >= Version("2.0"):
return "py310"
elif Version(pytorch_inference_version) >= Version("1.13"):
return "py39"
elif Version(pytorch_inference_version) >= Version("1.9"):
return "py38"
elif Version(pytorch_inference_version) >= Version("1.4.0"):
return "py3"
else:
return request.param
@pytest.fixture(scope="module")
def huggingface_pytorch_training_version(huggingface_training_version):
return _huggingface_base_fm_version(
huggingface_training_version, "pytorch", "huggingface_training"
)[0]
@pytest.fixture(scope="module")
def huggingface_pytorch_training_py_version(huggingface_pytorch_training_version):
if Version(huggingface_pytorch_training_version) >= Version("2.3"):
return "py311"
if Version(huggingface_pytorch_training_version) >= Version("2.0"):
return "py310"
elif Version(huggingface_pytorch_training_version) >= Version("1.13"):
return "py39"
elif Version(huggingface_pytorch_training_version) >= Version("1.9"):
return "py38"
else:
return "py36"
@pytest.fixture(scope="module")
def huggingface_training_compiler_pytorch_version(
huggingface_training_compiler_version,
):
versions = _huggingface_base_fm_version(
huggingface_training_compiler_version, "pytorch", "huggingface_training_compiler"
)
if not versions:
pytest.skip(
f"Hugging Face Training Compiler version {huggingface_training_compiler_version} does "
f"not have a PyTorch release."
)
return versions[0]
@pytest.fixture(scope="module")
def huggingface_training_compiler_tensorflow_version(
huggingface_training_compiler_version,
):
versions = _huggingface_base_fm_version(
huggingface_training_compiler_version, "tensorflow", "huggingface_training_compiler"
)
if not versions:
pytest.skip(
f"Hugging Face Training Compiler version {huggingface_training_compiler_version} "
f"does not have a TensorFlow release."
)
return versions[0]
@pytest.fixture(scope="module")
def huggingface_training_compiler_tensorflow_py_version(
huggingface_training_compiler_tensorflow_version,
):
return (
"py37"
if Version(huggingface_training_compiler_tensorflow_version) < Version("2.6")
else "py38"
)
@pytest.fixture(scope="module")
def huggingface_training_compiler_pytorch_py_version(
huggingface_training_compiler_pytorch_version,
):
return "py38"
@pytest.fixture(scope="module")
def huggingface_pytorch_latest_training_py_version(
huggingface_training_pytorch_latest_version,
):
if Version(huggingface_training_pytorch_latest_version) >= Version("2.3"):
return "py311"
if Version(huggingface_training_pytorch_latest_version) >= Version("2.0"):
return "py310"
elif Version(huggingface_training_pytorch_latest_version) >= Version("1.13"):
return "py39"
elif Version(huggingface_training_pytorch_latest_version) >= Version("1.9"):
return "py38"
else:
return "py36"
@pytest.fixture(scope="module")
def pytorch_training_compiler_py_version(
pytorch_training_compiler_version,
):
return "py39" if Version(pytorch_training_compiler_version) > Version("1.12") else "py38"
# TODO: Create a fixture to get the latest py version from TRCOMP image_uri.
@pytest.fixture(scope="module")
def huggingface_pytorch_latest_inference_py_version(
huggingface_inference_pytorch_latest_version,
):
if Version(huggingface_inference_pytorch_latest_version) >= Version("2.0"):
return "py310"
elif Version(huggingface_inference_pytorch_latest_version) >= Version("1.13"):
return "py39"
elif Version(huggingface_inference_pytorch_latest_version) >= Version("1.9"):
return "py38"
else:
return "py36"
@pytest.fixture(scope="module")
def graviton_tensorflow_version():
return "2.9.1"
@pytest.fixture(scope="module")
def graviton_pytorch_version():
return "1.12.1"
@pytest.fixture(scope="module")
def graviton_xgboost_versions():
return ["1.5-1", "1.3-1"]
@pytest.fixture(scope="module")
def graviton_sklearn_versions():
return ["1.0-1"]
@pytest.fixture(scope="module")
def graviton_xgboost_unsupported_versions():
return ["1", "0.90-1", "0.90-2", "1.0-1", "1.2-1", "1.2-2"]
@pytest.fixture(scope="module")
def graviton_sklearn_unsupported_versions():
return ["0.20.0", "0.23-1"]
@pytest.fixture(scope="module")
def huggingface_tensorflow_latest_training_py_version():
return "py38"
@pytest.fixture(scope="module")
def huggingface_neuron_latest_inference_pytorch_version():
return "1.9"
@pytest.fixture(scope="module")
def huggingface_neuronx_latest_inference_pytorch_version():
return "1.13"
@pytest.fixture(scope="module")
def huggingface_neuronx_latest_training_pytorch_version():
return "1.13"
@pytest.fixture(scope="module")
def huggingface_neuron_latest_inference_transformer_version():
return "4.12"
@pytest.fixture(scope="module")
def huggingface_neuronx_latest_inference_transformer_version():
return "4.36.2"
@pytest.fixture(scope="module")
def huggingface_neuronx_latest_training_transformer_version():
return "4.34.1"
@pytest.fixture(scope="module")
def huggingface_neuron_latest_inference_py_version():
return "py37"
@pytest.fixture(scope="module")
def huggingface_neuronx_latest_inference_py_version():
return "py310"
@pytest.fixture(scope="module")
def huggingface_neuronx_latest_training_py_version():
return "py310"
@pytest.fixture(scope="module")
def pytorch_neuron_version():
return "1.11"
@pytest.fixture(scope="module")
def pytorch_eia_py_version():
return "py3"
@pytest.fixture(scope="module")
def neo_pytorch_latest_py_version():
return "py3"
@pytest.fixture(scope="module")
def neo_pytorch_compilation_job_name():
return utils.name_from_base("pytorch-neo-model")
@pytest.fixture(scope="module")
def neo_pytorch_target_device():
return "ml_c5"
@pytest.fixture(scope="module")
def neo_pytorch_cpu_instance_type():
return "ml.c5.xlarge"
@pytest.fixture(scope="module")
def xgboost_framework_version(xgboost_version):
if xgboost_version in ("1", "latest"):
pytest.skip("Skipping XGBoost algorithm version.")
return xgboost_version
@pytest.fixture(scope="module")
def xgboost_gpu_framework_version(xgboost_version):
if xgboost_version in ("1", "latest"):
pytest.skip("Skipping XGBoost algorithm version.")
if Version(xgboost_version) < Version("1.2"):
pytest.skip("Skipping XGBoost cpu-only version.")
return xgboost_version
@pytest.fixture(scope="module", params=["py2", "py3"])
def tensorflow_training_py_version(tensorflow_training_version, request):
return _tf_py_version(tensorflow_training_version, request)
@pytest.fixture(scope="module", params=["py2", "py3"])
def tensorflow_inference_py_version(tensorflow_inference_version, request):
version = Version(tensorflow_inference_version)
if version == Version("1.15") or Version("1.15.4") <= version < Version("1.16"):
return "py36"
return _tf_py_version(tensorflow_inference_version, request)
def _tf_py_version(tf_version, request):
version = Version(tf_version)
if version == Version("1.15") or Version("1.15.4") <= version < Version("1.16"):
return "py3"
if version < Version("1.11"):
return "py2"
if version == Version("2.0") or Version("2.0.3") <= version < Version("2.1"):
return "py3"
if version == Version("2.1") or Version("2.1.2") <= version < Version("2.2"):
return "py3"
if version < Version("2.2"):
return request.param
if Version("2.2") <= version < Version("2.6"):
return "py37"
if Version("2.6") <= version < Version("2.8"):
return "py38"
if Version("2.8") <= version < Version("2.12"):
return "py39"
return "py310"
@pytest.fixture(scope="module")
def tf_full_version(tensorflow_training_latest_version, tensorflow_inference_latest_version):
"""Fixture for TF tests that test both training and inference.
Fixture exists as such, since TF training and TFS have different latest versions.
Otherwise, this would simply be a single latest version.
"""
tensorflow_training_latest_version = Version(tensorflow_training_latest_version)
tensorflow_inference_latest_version = Version(tensorflow_inference_latest_version)
return_version = min(
tensorflow_training_latest_version,
tensorflow_inference_latest_version,
)
return (
f"{return_version.major}.{return_version.minor}"
if return_version in SpecifierSet(">=2.16")
else str(return_version)
)
@pytest.fixture(scope="module")
def tf_full_py_version(tf_full_version):
"""Fixture to match tf_full_version
Fixture exists as such, since TF training and TFS have different latest versions.
Otherwise, this would simply be py37 to match the latest version support.
"""
version = Version(tf_full_version)
if version < Version("1.11"):
return "py2"
if version < Version("2.2"):
return "py3"
if version < Version("2.6"):
return "py37"
if version < Version("2.8"):
return "py38"
if version < Version("2.12"):
return "py39"
return "py310"
@pytest.fixture(scope="module")
def pytorch_ddp_py_version():
return "py3"
@pytest.fixture(
scope="module", params=["1.10", "1.10.0", "1.10.2", "1.11", "1.11.0", "1.12", "1.12.0"]
)
def pytorch_ddp_framework_version(request):
return request.param
@pytest.fixture(scope="module")
def torch_distributed_py_version():
return "py3"
@pytest.fixture(scope="module", params=["1.11.0"])
def torch_distributed_framework_version(request):
return request.param
@pytest.fixture(scope="session")
def cpu_instance_type(sagemaker_session, request):
region = sagemaker_session.boto_session.region_name
if region in NO_M4_REGIONS:
return "ml.m5.xlarge"
else:
return "ml.m4.xlarge"
@pytest.fixture(scope="session")
def gpu_instance_type(sagemaker_session, request):
region = sagemaker_session.boto_session.region_name
if region in NO_P3_REGIONS:
return "ml.p2.xlarge"
else:
return "ml.p3.2xlarge"
@pytest.fixture()
def gpu_pytorch_instance_type(sagemaker_session, request):
fw_version = None
for pytorch_version_fixture in [
"pytorch_inference_version",
"huggingface_training_pytorch_latest_version",
"huggingface_inference_pytorch_latest_version",
]:
if pytorch_version_fixture in request.fixturenames:
fw_version = request.getfixturevalue(pytorch_version_fixture)
if fw_version is None:
fw_version = request.param
region = sagemaker_session.boto_session.region_name
if region in NO_P3_REGIONS:
if Version(fw_version) >= Version("1.13"):
return PYTORCH_RENEWED_GPU
else:
return "ml.p2.xlarge"
else:
return "ml.p3.2xlarge"
@pytest.fixture(scope="session")
def gpu_instance_type_list(sagemaker_session, request):
region = sagemaker_session.boto_session.region_name
if region in NO_P3_REGIONS:
return ["ml.p2.xlarge"]
else:
return ["ml.p3.2xlarge", "ml.p2.xlarge"]
@pytest.fixture(scope="session")
def inf_instance_type(sagemaker_session, request):
return "ml.inf1.xlarge"
@pytest.fixture(scope="session")
def ec2_instance_type(cpu_instance_type):
return cpu_instance_type[3:]
@pytest.fixture(scope="session")
def alternative_cpu_instance_type(sagemaker_session, request):
region = sagemaker_session.boto_session.region_name
if region in NO_T2_REGIONS:
# T3 is not supported by hosting yet
return "ml.c5.xlarge"
else:
return "ml.t2.medium"
@pytest.fixture(scope="session")
def cpu_instance_family(cpu_instance_type):
return "_".join(cpu_instance_type.split(".")[0:2])
@pytest.fixture(scope="session")
def inf_instance_family(inf_instance_type):
return "_".join(inf_instance_type.split(".")[0:2])
def pytest_generate_tests(metafunc):
if "instance_type" in metafunc.fixturenames:
boto_config = metafunc.config.getoption("--boto-config")
parsed_config = json.loads(boto_config) if boto_config else {}
region = parsed_config.get("region_name", DEFAULT_REGION)
cpu_instance_type = "ml.m5.xlarge" if region in NO_M4_REGIONS else "ml.m4.xlarge"
params = [cpu_instance_type]
if not (
region in tests.integ.HOSTING_NO_P3_REGIONS
or region in tests.integ.TRAINING_NO_P3_REGIONS
):
params.append("ml.p3.2xlarge")
elif not (
region in tests.integ.HOSTING_NO_P2_REGIONS
or region in tests.integ.TRAINING_NO_P2_REGIONS
):
params.append("ml.p2.xlarge")
metafunc.parametrize("instance_type", params, scope="session")
_generate_all_framework_version_fixtures(metafunc)
def _generate_all_framework_version_fixtures(metafunc):
for fw in FRAMEWORKS_FOR_GENERATED_VERSION_FIXTURES:
config = image_uris.config_for_framework(fw.replace("_", "-"))
if "scope" in config:
_parametrize_framework_version_fixtures(metafunc, fw, config)
else:
for image_scope in config.keys():
if fw in ("xgboost", "sklearn"):
_parametrize_framework_version_fixtures(metafunc, fw, config[image_scope])
# XGB and SKLearn use the same configs for training,
# inference, and graviton_inference. Break after first
# iteration to avoid duplicate KeyError
break
fixture_prefix = f"{fw}_{image_scope}" if image_scope not in fw else fw
_parametrize_framework_version_fixtures(
metafunc, fixture_prefix, config[image_scope]
)
def _huggingface_base_fm_version(huggingface_version, base_fw, fixture_prefix):
config_name = (
"huggingface-training-compiler" if "training_compiler" in fixture_prefix else "huggingface"
)
config = image_uris.config_for_framework(config_name)
if "training" in fixture_prefix:
hf_config = config.get("training")
else:
hf_config = config.get("inference")
original_version = huggingface_version
if "version_aliases" in hf_config:
huggingface_version = hf_config.get("version_aliases").get(
huggingface_version, huggingface_version
)
version_config = hf_config.get("versions").get(huggingface_version)
versions = list()
for key in list(version_config.keys()):
if key.startswith(base_fw):
base_fw_version = key[len(base_fw) :]
if len(original_version.split(".")) == 2:
base_fw_version = ".".join(base_fw_version.split(".")[:-1])
versions.append(base_fw_version)
return sorted(versions, reverse=True)
def _generate_huggingface_base_fw_latest_versions(
metafunc, fixture_prefix, huggingface_version, base_fw
):
versions = _huggingface_base_fm_version(huggingface_version, base_fw, fixture_prefix)
fixture_name = f"{fixture_prefix}_{base_fw}_latest_version"
if fixture_name in metafunc.fixturenames:
metafunc.parametrize(fixture_name, versions, scope="session")
def _parametrize_framework_version_fixtures(metafunc, fixture_prefix, config):
fixture_name = "{}_version".format(fixture_prefix)
if fixture_name in metafunc.fixturenames:
versions = list(config["versions"].keys()) + list(config.get("version_aliases", {}).keys())
metafunc.parametrize(fixture_name, versions, scope="session")
latest_version = sorted(config["versions"].keys(), key=lambda v: Version(v))[-1]
fixture_name = "{}_latest_version".format(fixture_prefix)
if fixture_name in metafunc.fixturenames:
metafunc.parametrize(fixture_name, (latest_version,), scope="session")
if "huggingface" in fixture_prefix:
_generate_huggingface_base_fw_latest_versions(
metafunc, fixture_prefix, latest_version, "pytorch"
)
_generate_huggingface_base_fw_latest_versions(
metafunc, fixture_prefix, latest_version, "tensorflow"
)
fixture_name = "{}_latest_py_version".format(fixture_prefix)
if fixture_name in metafunc.fixturenames:
config = config["versions"]
py_versions = config[latest_version].get("py_versions", config[latest_version].keys())
if "repository" in py_versions or "registries" in py_versions:
# Config did not specify `py_versions` and is not arranged by py_version. Assume py3
metafunc.parametrize(fixture_name, ("py3",), scope="session")
else:
metafunc.parametrize(fixture_name, (sorted(py_versions)[-1],), scope="session")