forked from jax-ml/jax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
scipy_interpolate_test.py
66 lines (53 loc) · 2.3 KB
/
scipy_interpolate_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# Copyright 2022 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from absl.testing import absltest
import operator
from functools import reduce
import numpy as np
from jax._src import test_util as jtu
import scipy.interpolate as sp_interp
import jax.scipy.interpolate as jsp_interp
from jax import config
config.parse_flags_with_absl()
class LaxBackedScipyInterpolateTests(jtu.JaxTestCase):
"""Tests for LAX-backed scipy.interpolate implementations"""
@jtu.sample_product(
spaces=(((0., 10., 10),), ((-15., 20., 12), (3., 4., 24))),
method=("linear", "nearest"),
)
def testRegularGridInterpolator(self, spaces, method):
rng = jtu.rand_default(self.rng())
scipy_fun = lambda init_args, call_args: sp_interp.RegularGridInterpolator(
*init_args[:2], method, False, *init_args[2:])(*call_args)
lax_fun = lambda init_args, call_args: jsp_interp.RegularGridInterpolator(
*init_args[:2], method, False, *init_args[2:])(*call_args)
def args_maker():
points = tuple(map(lambda x: np.linspace(*x), spaces))
values = rng(reduce(operator.add, tuple(map(np.shape, points))), float)
fill_value = np.nan
init_args = (points, values, fill_value)
n_validation_points = 50
valid_points = tuple(
map(
lambda x: np.linspace(x[0] - 0.2 * (x[1] - x[0]), x[1] + 0.2 *
(x[1] - x[0]), n_validation_points),
spaces))
valid_points = np.squeeze(np.stack(valid_points, axis=1))
call_args = (valid_points,)
return init_args, call_args
self._CheckAgainstNumpy(
scipy_fun, lax_fun, args_maker, check_dtypes=False, tol=1e-4)
self._CompileAndCheck(lax_fun, args_maker, rtol={np.float64: 1e-14})
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())