forked from aqlaboratory/openfold
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_feats.py
393 lines (319 loc) · 14 KB
/
test_feats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# Copyright 2021 AlQuraishi Laboratory
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import numpy as np
import unittest
import openfold.data.data_transforms as data_transforms
from openfold.np.residue_constants import (
restype_rigid_group_default_frame,
restype_atom14_to_rigid_group,
restype_atom14_mask,
restype_atom14_rigid_group_positions,
)
import openfold.utils.feats as feats
from openfold.utils.rigid_utils import Rotation, Rigid
from openfold.utils.geometry.rigid_matrix_vector import Rigid3Array
from openfold.utils.geometry.rotation_matrix import Rot3Array
from openfold.utils.geometry.vector import Vec3Array
from openfold.utils.tensor_utils import (
tree_map,
tensor_tree_map,
)
import tests.compare_utils as compare_utils
from tests.config import consts
from tests.data_utils import random_affines_4x4, random_asym_ids
if compare_utils.alphafold_is_installed():
alphafold = compare_utils.import_alphafold()
import jax
import haiku as hk
class TestFeats(unittest.TestCase):
@classmethod
def setUpClass(cls):
if compare_utils.alphafold_is_installed():
if consts.is_multimer:
cls.am_atom = alphafold.model.all_atom_multimer
cls.am_fold = alphafold.model.folding_multimer
cls.am_modules = alphafold.model.modules_multimer
cls.am_rigid = alphafold.model.geometry
else:
cls.am_atom = alphafold.model.all_atom
cls.am_fold = alphafold.model.folding
cls.am_modules = alphafold.model.modules
cls.am_rigid = alphafold.model.r3
@compare_utils.skip_unless_alphafold_installed()
def test_pseudo_beta_fn_compare(self):
def test_pbf(aatype, all_atom_pos, all_atom_mask):
return alphafold.model.modules.pseudo_beta_fn(
aatype,
all_atom_pos,
all_atom_mask,
)
f = hk.transform(test_pbf)
n_res = consts.n_res
aatype = np.random.randint(0, 22, (n_res,))
all_atom_pos = np.random.rand(n_res, 37, 3).astype(np.float32)
all_atom_mask = np.random.randint(0, 2, (n_res, 37))
out_gt_pos, out_gt_mask = f.apply(
{}, None, aatype, all_atom_pos, all_atom_mask
)
out_gt_pos = torch.tensor(np.array(out_gt_pos.block_until_ready()))
out_gt_mask = torch.tensor(np.array(out_gt_mask.block_until_ready()))
out_repro_pos, out_repro_mask = feats.pseudo_beta_fn(
torch.tensor(aatype).cuda(),
torch.tensor(all_atom_pos).cuda(),
torch.tensor(all_atom_mask).cuda(),
)
out_repro_pos = out_repro_pos.cpu()
out_repro_mask = out_repro_mask.cpu()
self.assertTrue(
torch.max(torch.abs(out_gt_pos - out_repro_pos)) < consts.eps
)
self.assertTrue(
torch.max(torch.abs(out_gt_mask - out_repro_mask)) < consts.eps
)
@compare_utils.skip_unless_alphafold_installed()
def test_atom37_to_torsion_angles_compare(self):
def run_test(aatype, all_atom_pos, all_atom_mask):
return alphafold.model.all_atom.atom37_to_torsion_angles(
aatype,
all_atom_pos,
all_atom_mask,
placeholder_for_undefined=False,
)
f = hk.transform(run_test)
n_templ = 7
n_res = 13
aatype = np.random.randint(0, 22, (n_templ, n_res)).astype(np.int64)
all_atom_pos = np.random.rand(n_templ, n_res, 37, 3).astype(np.float32)
all_atom_mask = np.random.randint(0, 2, (n_templ, n_res, 37)).astype(
np.float32
)
out_gt = f.apply({}, None, aatype, all_atom_pos, all_atom_mask)
out_gt = jax.tree_map(lambda x: torch.as_tensor(np.array(x)), out_gt)
out_repro = data_transforms.atom37_to_torsion_angles()(
{
"aatype": torch.as_tensor(aatype).cuda(),
"all_atom_positions": torch.as_tensor(all_atom_pos).cuda(),
"all_atom_mask": torch.as_tensor(all_atom_mask).cuda(),
},
)
tasc = out_repro["torsion_angles_sin_cos"].cpu()
atasc = out_repro["alt_torsion_angles_sin_cos"].cpu()
tam = out_repro["torsion_angles_mask"].cpu()
# This function is extremely sensitive to floating point imprecisions,
# so it is given much greater latitude in comparison tests.
self.assertTrue(
torch.mean(torch.abs(out_gt["torsion_angles_sin_cos"] - tasc))
< 0.01
)
self.assertTrue(
torch.mean(torch.abs(out_gt["alt_torsion_angles_sin_cos"] - atasc))
< 0.01
)
self.assertTrue(
torch.max(torch.abs(out_gt["torsion_angles_mask"] - tam))
< consts.eps
)
@compare_utils.skip_unless_alphafold_installed()
def test_atom37_to_frames_compare(self):
def run_atom37_to_frames(aatype, all_atom_positions, all_atom_mask):
if consts.is_multimer:
all_atom_positions = self.am_rigid.Vec3Array.from_array(all_atom_positions)
return self.am_atom.atom37_to_frames(
aatype, all_atom_positions, all_atom_mask
)
f = hk.transform(run_atom37_to_frames)
n_res = consts.n_res
batch = {
"aatype": np.random.randint(0, 21, (n_res,)),
"all_atom_positions": np.random.rand(n_res, 37, 3).astype(
np.float32
),
"all_atom_mask": np.random.randint(0, 2, (n_res, 37)).astype(
np.float32
),
}
out_gt = f.apply({}, None, **batch)
if consts.is_multimer:
batch["asym_id"] = random_asym_ids(n_res)
to_tensor = (lambda t: torch.tensor(np.array(t))
if not isinstance(t, self.am_rigid.Rigid3Array)
else torch.tensor(np.array(t.to_array())))
else:
to_tensor = lambda t: torch.tensor(np.array(t))
out_gt = {k: to_tensor(v) for k, v in out_gt.items()}
def rigid3x4_to_4x4(rigid3arr):
four_by_four = torch.zeros(*rigid3arr.shape[:-2], 4, 4)
four_by_four[..., :3, :4] = rigid3arr
four_by_four[..., 3, 3] = 1
return four_by_four
def flat12_to_4x4(flat12):
rot = flat12[..., :9].view(*flat12.shape[:-1], 3, 3)
trans = flat12[..., 9:]
four_by_four = torch.zeros(*flat12.shape[:-1], 4, 4)
four_by_four[..., :3, :3] = rot
four_by_four[..., :3, 3] = trans
four_by_four[..., 3, 3] = 1
return four_by_four
convert_func = rigid3x4_to_4x4 if consts.is_multimer else flat12_to_4x4
out_gt["rigidgroups_gt_frames"] = convert_func(
out_gt["rigidgroups_gt_frames"]
)
out_gt["rigidgroups_alt_gt_frames"] = convert_func(
out_gt["rigidgroups_alt_gt_frames"]
)
to_tensor = lambda t: torch.tensor(np.array(t)).cuda()
batch = tree_map(to_tensor, batch, np.ndarray)
out_repro = data_transforms.atom37_to_frames(batch)
out_repro = tensor_tree_map(lambda t: t.cpu(), out_repro)
for k, v in out_gt.items():
self.assertTrue(
torch.max(torch.abs(out_gt[k] - out_repro[k])) < consts.eps
)
def test_torsion_angles_to_frames_shape(self):
batch_size = 2
n = 5
rots = torch.rand((batch_size, n, 3, 3))
trans = torch.rand((batch_size, n, 3))
if consts.is_multimer:
rotation = Rot3Array.from_array(rots)
translation = Vec3Array.from_array(trans)
ts = Rigid3Array(rotation, translation)
else:
ts = Rigid(Rotation(rot_mats=rots), trans)
angles = torch.rand((batch_size, n, 7, 2))
aas = torch.tensor([i % 2 for i in range(n)])
aas = torch.stack([aas for _ in range(batch_size)])
frames = feats.torsion_angles_to_frames(
ts,
angles,
aas,
torch.tensor(restype_rigid_group_default_frame),
)
self.assertTrue(frames.shape == (batch_size, n, 8))
@compare_utils.skip_unless_alphafold_installed()
def test_torsion_angles_to_frames_compare(self):
def run_torsion_angles_to_frames(
aatype, backb_to_global, torsion_angles_sin_cos
):
return self.am_atom.torsion_angles_to_frames(
aatype,
backb_to_global,
torsion_angles_sin_cos,
)
f = hk.transform(run_torsion_angles_to_frames)
n_res = consts.n_res
aatype = np.random.randint(0, 21, size=(n_res,))
affines = random_affines_4x4((n_res,))
if consts.is_multimer:
rigids = self.am_rigid.Rigid3Array.from_array4x4(affines)
transformations = Rigid3Array.from_tensor_4x4(
torch.as_tensor(affines).float()
)
else:
rigids = self.am_rigid.rigids_from_tensor4x4(affines)
transformations = Rigid.from_tensor_4x4(
torch.as_tensor(affines).float()
)
torsion_angles_sin_cos = np.random.rand(n_res, 7, 2)
out_gt = f.apply({}, None, aatype, rigids, torsion_angles_sin_cos)
jax.tree_map(lambda x: x.block_until_ready(), out_gt)
out = feats.torsion_angles_to_frames(
transformations.cuda(),
torch.as_tensor(torsion_angles_sin_cos).cuda(),
torch.as_tensor(aatype).cuda(),
torch.tensor(restype_rigid_group_default_frame).cuda(),
)
# Convert the Rigids to 4x4 transformation tensors
out_gt_rot = out_gt.rot if not consts.is_multimer else out_gt.rotation.to_array()
out_gt_trans = out_gt.trans if not consts.is_multimer else out_gt.translation.to_array()
if consts.is_multimer:
rots_gt = torch.as_tensor(np.array(out_gt_rot))
trans_gt = torch.as_tensor(np.array(out_gt_trans))
else:
rots_gt = list(map(lambda x: torch.as_tensor(np.array(x)), out_gt_rot))
trans_gt = list(
map(lambda x: torch.as_tensor(np.array(x)), out_gt_trans)
)
rots_gt = torch.cat([x.unsqueeze(-1) for x in rots_gt], dim=-1)
rots_gt = rots_gt.view(*rots_gt.shape[:-1], 3, 3)
trans_gt = torch.cat([x.unsqueeze(-1) for x in trans_gt], dim=-1)
transforms_gt = torch.cat([rots_gt, trans_gt.unsqueeze(-1)], dim=-1)
bottom_row = torch.zeros((*rots_gt.shape[:-2], 1, 4))
bottom_row[..., 3] = 1
transforms_gt = torch.cat([transforms_gt, bottom_row], dim=-2)
transforms_repro = out.to_tensor_4x4().cpu()
self.assertTrue(
torch.max(torch.abs(transforms_gt - transforms_repro) < consts.eps)
)
def test_frames_and_literature_positions_to_atom14_pos_shape(self):
batch_size = consts.batch_size
n_res = consts.n_res
rots = torch.rand((batch_size, n_res, 8, 3, 3))
trans = torch.rand((batch_size, n_res, 8, 3))
if consts.is_multimer:
rotation = Rot3Array.from_array(rots)
translation = Vec3Array.from_array(trans)
ts = Rigid3Array(rotation, translation)
else:
ts = Rigid(Rotation(rot_mats=rots), trans)
f = torch.randint(low=0, high=21, size=(batch_size, n_res)).long()
xyz = feats.frames_and_literature_positions_to_atom14_pos(
ts,
f,
torch.tensor(restype_rigid_group_default_frame),
torch.tensor(restype_atom14_to_rigid_group),
torch.tensor(restype_atom14_mask),
torch.tensor(restype_atom14_rigid_group_positions),
)
self.assertTrue(xyz.shape == (batch_size, n_res, 14, 3))
@compare_utils.skip_unless_alphafold_installed()
def test_frames_and_literature_positions_to_atom14_pos_compare(self):
def run_f(aatype, affines):
return self.am_atom.frames_and_literature_positions_to_atom14_pos(
aatype, affines
)
f = hk.transform(run_f)
n_res = consts.n_res
aatype = np.random.randint(0, 21, size=(n_res,))
affines = random_affines_4x4((n_res, 8))
if consts.is_multimer:
rigids = self.am_rigid.Rigid3Array.from_array4x4(affines)
transformations = Rigid3Array.from_tensor_4x4(
torch.as_tensor(affines).float()
)
else:
rigids = self.am_rigid.rigids_from_tensor4x4(affines)
transformations = Rigid.from_tensor_4x4(
torch.as_tensor(affines).float()
)
out_gt = f.apply({}, None, aatype, rigids)
jax.tree_map(lambda x: x.block_until_ready(), out_gt)
if consts.is_multimer:
out_gt = torch.as_tensor(np.array(out_gt.to_array()))
else:
out_gt = torch.stack(
[torch.as_tensor(np.array(x)) for x in out_gt], dim=-1
)
out_repro = feats.frames_and_literature_positions_to_atom14_pos(
transformations.cuda(),
torch.as_tensor(aatype).cuda(),
torch.tensor(restype_rigid_group_default_frame).cuda(),
torch.tensor(restype_atom14_to_rigid_group).cuda(),
torch.tensor(restype_atom14_mask).cuda(),
torch.tensor(restype_atom14_rigid_group_positions).cuda(),
).cpu()
compare_utils.assert_max_abs_diff_small(out_gt, out_repro, consts.eps)
if __name__ == "__main__":
unittest.main()