@@ -101,9 +101,9 @@ predict_rnn_gluon('分开', 10, model, vocab_size, ctx, idx_to_char, char_to_idx
101
101
102
102
``` {.python .input n=18}
103
103
# 本函数已保存在 gluonbook 包中方便以后使用。
104
- def train_and_predict_rnn_gluon(model, num_hiddens, vocab_size, ctx,
105
- corpus_indices, idx_to_char, char_to_idx,
106
- num_epochs, num_steps, lr, clipping_theta,
104
+ def train_and_predict_rnn_gluon(model, num_hiddens, vocab_size, ctx,
105
+ corpus_indices, idx_to_char, char_to_idx,
106
+ num_epochs, num_steps, lr, clipping_theta,
107
107
batch_size, pred_period, pred_len, prefixes):
108
108
loss = gloss.SoftmaxCrossEntropyLoss()
109
109
model.initialize(ctx=ctx, force_reinit=True, init=init.Normal(0.01))
@@ -134,7 +134,7 @@ def train_and_predict_rnn_gluon(model, num_hiddens, vocab_size, ctx,
134
134
epoch + 1, math.exp(loss_sum / (t + 1)), time.time() - start))
135
135
for prefix in prefixes:
136
136
print(' -', predict_rnn_gluon(
137
- prefix, pred_len, model, vocab_size,
137
+ prefix, pred_len, model, vocab_size,
138
138
ctx, idx_to_char, char_to_idx))
139
139
```
140
140
@@ -143,9 +143,9 @@ def train_and_predict_rnn_gluon(model, num_hiddens, vocab_size, ctx,
143
143
``` {.python .input n=19}
144
144
num_epochs, batch_size, lr, clipping_theta = 200, 32, 1e2, 1e-2
145
145
pred_period, pred_len, prefixes = 50, 50, ['分开', '不分开']
146
- train_and_predict_rnn_gluon(model, num_hiddens, vocab_size, ctx,
147
- corpus_indices, idx_to_char, char_to_idx,
148
- num_epochs, num_steps, lr, clipping_theta,
146
+ train_and_predict_rnn_gluon(model, num_hiddens, vocab_size, ctx,
147
+ corpus_indices, idx_to_char, char_to_idx,
148
+ num_epochs, num_steps, lr, clipping_theta,
149
149
batch_size, pred_period, pred_len, prefixes)
150
150
```
151
151
0 commit comments