forked from Const-me/Whisper
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvolutionMain2Fixed.hlsl
119 lines (101 loc) · 3.21 KB
/
convolutionMain2Fixed.hlsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// Optimized version of convolutionMain2.hlsl for kernel size = 3
// Dispatch [ ( ( ne10 / 2 ) + TILE_Y - 1 ) / TILE_Y, ne02, 1 ] thread groups of this shader
#ifndef TILE_Y
static const uint TILE_Y = 8;
#endif
#ifndef THREADS
static const uint THREADS = 64;
#endif
Buffer<float> arg0: register( t0 );
Buffer<float> arg1: register( t1 );
RWBuffer<float> result: register( u0 );
cbuffer Constants: register( b0 )
{
uint4 src0_elements: packoffset( c0 );
uint4 src0_strides: packoffset( c1 );
uint4 src1_elements: packoffset( c2 );
uint4 result_elements: packoffset( c4 );
uint4 result_strides: packoffset( c5 );
}
// The accumulators we're after
groupshared float resTemp[ TILE_Y ][ THREADS ];
// Multiply + accumulate the specified row
inline void accumulate( float a0, float a1, const uint resultRow, const uint thread )
{
float acc = resTemp[ resultRow ][ thread ];
acc = mad( a0, a1, acc );
resTemp[ resultRow ][ thread ] = acc;
}
inline void convolutionTile( const uint s0, uint s1, const uint thread, const uint stride, const uint height )
{
// Load 3 rows from arg0
const float3 a0 = float3( arg0[ s0 ], arg0[ s0 + stride ], arg0[ s0 + stride * 2 ] );
// Row 0
float a1 = arg1[ s1 ];
accumulate( a0[ 0 ], a1, 0, thread );
s1 += stride;
for( uint i = 1; i < height; i++ )
{
// Row i*2-1
// Even-indexed rows only contribute to a single output rows, after muiltiplied by kernel row #1
a1 = arg1[ s1 ];
accumulate( a0[ 1 ], a1, i - 1, thread );
s1 += stride;
// Row i*2, contributes to 2 output rows corresponding to kernel rows #0 and #2
a1 = arg1[ s1 ];
accumulate( a0[ 2 ], a1, i - 1, thread );
accumulate( a0[ 0 ], a1, i, thread );
s1 += stride;
}
// Row height*2 - 1
a1 = arg1[ s1 ];
accumulate( a0[ 1 ], a1, height - 1, thread );
s1 += stride;
// Row height*2
a1 = arg1[ s1 ];
accumulate( a0[ 2 ], a1, height - 1, thread );
}
#include "miscUtils.hlsli"
[ numthreads( THREADS, 1, 1 ) ]
void main( uint3 group: SV_GroupID, uint thread : SV_GroupIndex )
{
uint i;
// Zero out the accumulators
for( i = 0; i < TILE_Y; i++ )
resTemp[ i ][ thread ] = 0.0;
GroupMemoryBarrierWithGroupSync();
const uint i1 = group.y;
const uint i0 = group.x * TILE_Y * 2;
const uint height = min( TILE_Y, ( src1_elements.x / 2 ) - group.x * TILE_Y );
const uint ne00 = src0_elements[ 0 ];
const uint ne01 = src0_elements[ 1 ];
const int ew0 = roundUp32( ne01 );
uint s0 = i1 * ew0 * ne00;
const uint s0End = s0 + ew0;
uint s1 = i0 * ew0;
s0 += thread;
s1 += thread;
for( ; s0 < s0End; s0 += THREADS, s1 += THREADS )
convolutionTile( s0, s1, thread, ew0, height );
GroupMemoryBarrierWithGroupSync();
// Now we need horizontal sums of these shared accumulators, i.e. reduce [height][THREADS] shared array into [height][1] column
for( i = THREADS / 2; i > 0; i /= 2 )
{
if( thread < i )
{
for( uint j = 0; j < height; j++ )
{
float sum = resTemp[ j ][ thread ];
sum += resTemp[ j ][ thread + i ];
resTemp[ j ][ thread ] = sum;
}
}
GroupMemoryBarrierWithGroupSync();
}
// And finally, store that column to global memory
if( thread >= height )
return;
const uint nb1 = result_strides[ 1 ];
const uint rdi = i1 * nb1 + group.x * TILE_Y + thread;
result[ rdi ] = resTemp[ thread ][ 0 ];
}