forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
EmbeddingSpMDMBenchmark.cc
356 lines (331 loc) · 11 KB
/
EmbeddingSpMDMBenchmark.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <immintrin.h>
#include <algorithm>
#include <cassert>
#include <chrono>
#include <cmath>
#include <cstdint>
#include <iomanip>
#include <iostream>
#include <map>
#include <numeric>
#include <random>
#include <set>
#include <vector>
#include "./BenchUtils.h"
#include "fbgemm/Fbgemm.h"
#include "fbgemm/FbgemmConvert.h"
#include "src/RefImplementations.h"
using namespace std;
using namespace fbgemm;
static vector<vector<int>> GetInputs_() {
vector<vector<int>> input_dims = {
// batch size, number of rows of table, emb dim , avg lengthl
// TODO: Add more inputs
// Use these -- but they are slow.
{10, 4000000, 32, 100},
{10, 4000000, 64, 100},
{10, 4000000, 128, 100},
{10, 4000000, 256, 100},
// Use these for debugging
// {2, 16, 128, 10},
// {10, 4000, 128, 100},
// {10, 4000, 128, 100},
// {10, 4000, 128, 100},
};
return input_dims;
}
void run_benchmark(
int batch_size,
int num_rows,
int embedding_dim,
int average_len,
bool normalize_by_lengths,
bool use_fp16_inputs = false,
bool use_32_bit_indices = false,
bool prefetch = false) {
// Create embedding table
default_random_engine generator;
vector<float> embedding_table(num_rows * embedding_dim);
normal_distribution<float> embedding_distribution;
for (size_t i = 0; i < embedding_table.size(); ++i) {
embedding_table[i] = embedding_distribution(generator);
}
vector<float16> embedding_table_fp16;
if (use_fp16_inputs) {
embedding_table_fp16.resize(embedding_table.size());
FloatToFloat16_simd(
embedding_table.data(),
embedding_table_fp16.data(),
embedding_table.size());
}
// Generate lengths
uniform_int_distribution<int> length_distribution(
1, std::min(2 * average_len + 1, num_rows));
vector<int> offsets(batch_size + 1);
offsets[0] = 0;
for (int i = 0; i < batch_size; ++i) {
offsets[i + 1] = offsets[i] + length_distribution(generator);
}
// Compute the number of indices
int lengths_sum = offsets[batch_size];
cout << "lengths_sum " << lengths_sum << endl;
// Generate indices
vector<int64_t> indices;
vector<int32_t> indices_32;
vector<int> container(num_rows);
// please note we generate unique indices
for (int i = 0; i < batch_size; ++i) {
iota(container.begin(), container.end(), 0);
random_shuffle(container.begin(), container.end());
copy(
container.begin(),
container.begin() + (offsets[i + 1] - offsets[i]),
back_inserter(indices));
}
copy(begin(indices), end(indices), back_inserter(indices_32));
// Generate weights
vector<float> weights(lengths_sum);
for (int i = 0; i < lengths_sum; ++i) {
weights[i] = embedding_distribution(generator);
}
vector<float> output_sls_ref(batch_size * embedding_dim);
vector<float> output_slws_ref(output_sls_ref.size()),
output_sls(output_sls_ref.size()), output_slws(output_sls_ref.size());
constexpr int NUM_WARMUP = 4;
constexpr int NUM_ITER = 10;
int elem_bytes = use_fp16_inputs ? sizeof(float16) : sizeof(float);
double bytes = lengths_sum *
(embedding_dim * elem_bytes + (use_32_bit_indices ? 4 : 8)) +
batch_size * sizeof(int);
double bytes_padded = lengths_sum *
((embedding_dim * elem_bytes + 63) / 64 * 64 +
(use_32_bit_indices ? 4 : 8)) +
batch_size * sizeof(int);
for (bool has_weight : {false, true}) {
vector<float>& output_ref = has_weight ? output_slws_ref : output_sls_ref;
bool success = false, success_ref = false;
if (use_fp16_inputs) {
if (use_32_bit_indices) {
success_ref = EmbeddingSpMDM_ref(
embedding_dim,
batch_size,
lengths_sum,
num_rows,
embedding_table_fp16.data(),
indices_32.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
normalize_by_lengths,
output_ref.data());
} else {
success_ref = EmbeddingSpMDM_ref(
embedding_dim,
batch_size,
lengths_sum,
num_rows,
embedding_table_fp16.data(),
indices.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
normalize_by_lengths,
output_ref.data());
}
} else {
if (use_32_bit_indices) {
success_ref = EmbeddingSpMDM_ref(
embedding_dim,
batch_size,
lengths_sum,
num_rows,
embedding_table.data(),
indices_32.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
normalize_by_lengths,
output_ref.data());
} else {
success_ref = EmbeddingSpMDM_ref(
embedding_dim,
batch_size,
lengths_sum,
num_rows,
embedding_table.data(),
indices.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
normalize_by_lengths,
output_ref.data());
}
}
auto kernel_fp32_i32 = GenerateEmbeddingSpMDM<float, int32_t>(
embedding_dim, has_weight, normalize_by_lengths, prefetch ? 16 : 0);
auto kernel_fp32_i64 = GenerateEmbeddingSpMDM<float, int64_t>(
embedding_dim, has_weight, normalize_by_lengths, prefetch ? 16 : 0);
auto kernel_fp16_i32 = GenerateEmbeddingSpMDM<float16, int32_t>(
embedding_dim, has_weight, normalize_by_lengths, prefetch ? 16 : 0);
auto kernel_fp16_i64 = GenerateEmbeddingSpMDM<float16, int64_t>(
embedding_dim, has_weight, normalize_by_lengths, prefetch ? 16 : 0);
vector<float>& output = has_weight ? output_slws : output_sls;
for (bool flush_cache : {false, true}) {
double t = measureWithWarmup(
[&]() {
if (use_fp16_inputs) {
if (use_32_bit_indices) {
success = kernel_fp16_i32(
batch_size,
lengths_sum,
num_rows,
embedding_table_fp16.data(),
indices_32.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
output.data());
} else {
success = kernel_fp16_i64(
batch_size,
lengths_sum,
num_rows,
embedding_table_fp16.data(),
indices.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
output.data());
}
} else {
if (use_32_bit_indices) {
success = kernel_fp32_i32(
batch_size,
lengths_sum,
num_rows,
embedding_table.data(),
indices_32.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
output.data());
} else {
success = kernel_fp32_i64(
batch_size,
lengths_sum,
num_rows,
embedding_table.data(),
indices.data(),
offsets.data(),
has_weight ? weights.data() : nullptr,
output.data());
}
}
},
NUM_WARMUP,
NUM_ITER,
[&]() {
if (flush_cache) {
cache_evict(embedding_table);
cache_evict(indices);
cache_evict(indices_32);
cache_evict(offsets);
cache_evict(weights);
cache_evict(output);
}
});
// printMatrix(
// matrix_op_t::NoTranspose,
// output.data(),
// batch_size,
// embedding_dim,
// embedding_dim,
// "");
// cout << "reference data\n";
// printMatrix(
// matrix_op_t::NoTranspose,
// output_ref.data(),
// batch_size,
// embedding_dim,
// embedding_dim,
// "");
// Check correctness
if (!flush_cache) {
if (success != success_ref) {
assert(
false && "ERROR: refernce impl and JIT imp did not both succeed");
} else if (success) {
for (size_t i = 0; i < output.size(); ++i) {
assert(output[i] == output_ref[i]);
if (output[i] != output_ref[i]) {
cout << i << " " << output[i] << " " << output_ref[i] << endl;
}
}
}
}
if (has_weight) {
cout << setw(16) << "SLW(WEIGHTED) ";
} else {
cout << setw(16) << "SLS ";
}
if (flush_cache) {
cout << setw(20) << "cache flushed";
} else {
cout << setw(20) << "cache not flushed";
}
if (prefetch) {
cout << setw(16) << "prefetch on";
} else {
cout << setw(16) << "prefetch off";
}
cout << setw(8) << "b/w" << setw(10) << bytes / 1e9 / t << " GB/s"
<< setw(20) << "effective b/w: " << setw(16)
<< bytes_padded / 1e9 / t << "GB/s" << setw(8) << " time "
<< setw(16) << t << endl;
} // flush_cache
} // has_weight
}
int main() {
vector<vector<int>> inputs(GetInputs_());
for (auto& input : inputs) {
assert(input.size() > 3);
int batch_size = input[0];
int num_rows = input[1];
int embedding_dim = input[2];
int average_len = input[3];
cout << "batch size" << setw(6) << batch_size << setw(10) << "num rows"
<< setw(16) << num_rows << setw(10) << "emb dim" << setw(6)
<< embedding_dim << setw(16) << "avg length" << setw(6) << average_len
<< endl;
for (bool normalize_by_lengths : {false, true}) {
for (bool use_fp16_inputs : {false, true}) {
for (bool use_32_bit_indices : {false, true}) {
for (bool prefetch : {false, true}) {
// args: batch sz, num rows, emb dim, avg len, normalize, use 32b,
// prefetch
if (normalize_by_lengths) {
cout << "Mean";
}
if (use_fp16_inputs) {
cout << "fp16 inputs";
}
cout << (use_32_bit_indices ? " 32" : " 64") << " bit indices";
if (prefetch) {
cout << " with prefetching";
}
cout << ", ";
run_benchmark(
batch_size,
num_rows,
embedding_dim,
average_len,
normalize_by_lengths,
use_fp16_inputs,
use_32_bit_indices,
prefetch);
} // prefetch
} // use_32_bit_indices
} // use_fp16_inputs
} // normalize_by_length
} // for each input
return 0;
}