forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GenerateKernelDirectConvU8S8S32ACC32.cc
899 lines (770 loc) · 26.8 KB
/
GenerateKernelDirectConvU8S8S32ACC32.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <iostream>
#include "./CodeGenHelpers.h"
#include "./DirectConv.h"
namespace fbgemm {
namespace x86 = asmjit::x86;
/**
* Generate AVX256 instructions for computing block in the rank-k update of
* 32-bit Accumulation kernel.
*
* this compute block implements the following register blocking
// register blocking:
// leverage vpmaddubsw instructions
for (int _icb = icb; _icb < icb + row_interleave; _icb ++ ) {
for (int _oc = oc; _oc < oc + mRegBLockSize; _oc ++) {
for (int _ow = ow; _ow < std::min(ow + 12, OUT_DIM[1]); _ow ++) {
out[_oc + _ow * OC] +=
input[_ich + (_ow + s * stride[1]) * IC + r * IC * IN_DIM[1]]
*
weights[(((((_oc/8) * (IC/4) + icb/4) * K[0] + r) * K[1] + s)
*8 + (_oc % 8)) * 4 + (_icb % 4)];
}
}
}
*
*/
/**
* Generate AVX256 instructions for storing the C registers back to the memory
* in 32-bit Accumulation kernel.
*/
template <>
template <inst_set_t instSet>
void DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::storeCRegs(
x86::Emitter* a,
int rowRegs,
int colRegs,
x86::Gp C_Offset,
x86::Gp ldcReg,
bool accum) {
using VecT = typename simd_info<instSet>::vec_reg_t;
static constexpr int vectorLen = simd_info<instSet>::WIDTH_BYTES;
for (int i = 0; i < rowRegs; ++i) {
if (i != 0) {
a->add(C_Offset, ldcReg);
} else {
a->xor_(C_Offset.r32(), C_Offset.r32());
}
for (int j = 0; j < colRegs; ++j) {
if (accum) {
a->vpaddd(
VecT(i * colRegs + j),
VecT(i * colRegs + j),
x86::dword_ptr(
a->zcx(), C_Offset, 0, j * vectorLen * sizeof(int8_t)));
}
a->vmovups(
x86::dword_ptr(a->zcx(), C_Offset, 0, j * vectorLen * sizeof(int8_t)),
VecT(i * colRegs + j));
}
}
}
template <>
template <inst_set_t instSet>
void DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::
genComputeBlockDirectConv(
x86::Emitter* a,
x86::Gp buffer_A,
x86::Gp buffer_B,
x86::Gp /*B_pf*/,
int rowRegs,
int colRegs,
int strideXich) {
static constexpr int vectorLen = simd_info<instSet>::WIDTH_BYTES;
using VecRegT = typename simd_info<instSet>::vec_reg_t;
constexpr int numRegs = simd_info<instSet>::NUM_VEC_REGS;
// used for matrix A
VecRegT AReg(numRegs - 1);
// used for matrix B
VecRegT BReg(numRegs - 2);
// Contains 16-bit 1s
VecRegT oneReg(numRegs - 3);
// temporary register
VecRegT res1(numRegs - 4);
for (int j = 0; j < colRegs; ++j) {
// load B
emitLoadDWord<instSet, VecRegT>(
a, BReg, x86::dword_ptr(buffer_B, j * vectorLen * sizeof(int8_t)));
// load A, broadcast and fmas
for (int i = 0; i < rowRegs; ++i) {
a->vpbroadcastd(
AReg, x86::dword_ptr(buffer_A, (i * strideXich) * sizeof(uint8_t)));
a->vpmaddubsw(res1, AReg, BReg);
a->vpmaddwd(res1, oneReg, res1);
a->vpaddd(VecRegT(i * colRegs + j), res1, VecRegT(i * colRegs + j));
}
// a->prefetcht0(x86::dword_ptr(B_pf, j * vectorLen * sizeof(int8_t)));
}
}
/**
* Get or Create the AVX256 instructions for 32-bit Accumulation macro-kernel.
*
* This function implements a direct convolution kernel that is specialized
* for kernel size (2, 6) and input_height (IN_DIM[0]) = 2.
*
* More specifically the implementation has the following requirements:
* * Weights has layout {OC/8, KH, KW, IC/4, 8, 4}
* * kernel size (2, 6), IN_DIM[0] = 2, therefore: OUT_DIM[0] = 1
* * Features are in channel last format
*
* mRegBlockSize = 12: the number of avx2 registers for output
* nRegBlockSize = 8: the # of output elements in one avx2 register
* row_interleave = 4: the horizontal reduction size for vpmaddubsw instruction
* O1: output_width: OUT_DIM[1]
* i1Xich: input_width multiply input_channel: IN_DIM[1] x IC
* strideXich: stride multiply input_channel: stride[1] x input_channel
*
*
* The kernel implements the following algorithm:
for (int ow = 0; ow < OUT_DIM[1]; ow+=12) {
L1 blocking: following weights are in L1 cache
for (int s = 0; s < K[1]; ++s) {
for (int r = 0; r < K[0]; ++r) {
for (int icb = 0; icb < IC; icb+=row_interleave) {
// register blocking:
// leverage vpmaddubsw instructions
for (int _icb = icb; _icb < icb + row_interleave; _icb ++ ) {
for (int _oc = oc; _oc < oc + mRegBLockSize; _oc ++) {
for (int _ow = ow; _ow < std::min(ow + 12, OUT_DIM[1]); _ow ++) {
out[_oc + _ow * OC] +=
input[_ich + (_ow + s * stride[1]) * IC + r * IC * IN_DIM[1]]
*
weights[(((((_oc/8) * (IC/4) + icb/4) * K[0] + r) * K[1] + s)
*8 + (_oc % 8)) * 4 + (_icb % 4)];
// If we get rid of the brackets, and substitute corrresponding
variables
//
// input[_ich + _ow * IC + s * strideXich + r * i1Xich]
// *
// weights[(((((_oc/8) * (IC/4) + icb/4) * K[0] + r) * K[1] + s)
// *8 + (_oc % 8)) * 4 + (_icb % 4)];
}
}
}
}
}
}
*
*/
template <>
template <inst_set_t instSet>
DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::jit_micro_kernel_fp
DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::getOrCreateDirectConv(
bool accum,
int32_t O1,
int32_t i1Xich,
int32_t strideXich) {
using VecRegT = typename simd_info<instSet>::vec_reg_t;
constexpr int numRegs = simd_info<instSet>::NUM_VEC_REGS;
static constexpr int vectorLen = simd_info<instSet>::WIDTH_BYTES;
std::tuple<bool, int, int, int, int, int, int> kernelSig;
// int ichSize = 32;
int mRegBlockSize = 12;
int nRegBlockSize = 8;
// int nRegBlockSizeMin;
int row_interleave = 4;
kernelSig = std::make_tuple(
accum, O1, i1Xich, strideXich, i1Xich, mRegBlockSize, nRegBlockSize);
return codeCache_.getOrCreate(kernelSig, [&]() -> jit_micro_kernel_fp {
asmjit::CodeHolder code;
code.init(runtime().environment());
x86::Assembler assembler(&code);
x86::Emitter* a = assembler.as<x86::Emitter>();
#if defined(FBGEMM_LOG_CODE)
// generated code logging
FILE* codeLogfile = fopen(
getCodeLoggingFile<instSet>(
accum, O1, i1Xich, strideXich, i1Xich, mRegBlockSize, nRegBlockSize)
.c_str(),
"w");
asmjit::FileLogger* codeLogger = new asmjit::FileLogger(codeLogfile);
if (codeLogger) {
code.setLogger(codeLogger);
}
#endif
const int maxMRegs = mRegBlockSize;
(void)maxMRegs; // Suppress unused variable warning
const int maxNRegs = nRegBlockSize * row_interleave / vectorLen;
assert(
maxMRegs * maxNRegs <= numRegs - 4 &&
"MRegs x NRegs is above available registers (MAX_REGS - 4)");
int O1RegBlocks = O1 / mRegBlockSize;
int O1RegBlocksRem = O1 % mRegBlockSize;
// arguments to the function created
x86::Gp buffer_A = a->zdi();
x86::Gp buffer_B = a->zsi();
x86::Gp B_pf = a->zdx();
x86::Gp CBase = a->zcx();
x86::Gp ichXk1 = a->gpz(8);
x86::Gp ldcReg = a->gpz(9);
asmjit::FuncDetail func;
func.init(
asmjit::FuncSignatureT<
void,
uint8_t*,
int8_t*,
int8_t*,
int32_t*,
int,
int>(asmjit::CallConvId::kHost),
a->environment());
asmjit::FuncFrame frame;
frame.init(func);
auto dirtyVecRegs = asmjit::Support::bitMask(0, 1, 2, 3, 4, 5, 6, 7) |
asmjit::Support::bitMask(8, 9, 10, 11, 12, 13, 14, 15);
if (numRegs >= 16) {
dirtyVecRegs |= asmjit::Support::bitMask(16, 17, 18, 19, 20, 21, 22, 23) |
asmjit::Support::bitMask(24, 25, 26, 27, 28, 29, 30, 31);
}
frame.setDirtyRegs(asmjit::RegGroup::kVec, dirtyVecRegs);
frame.setDirtyRegs(
asmjit::RegGroup::kGp,
asmjit::Support::bitMask(8, 9, 10, 11, 12, 13, 14, 15));
asmjit::FuncArgsAssignment args(&func);
args.assignAll(buffer_A, buffer_B, B_pf, CBase, ichXk1, ldcReg);
args.updateFuncFrame(frame);
frame.finalize();
a->emitProlog(frame);
a->emitArgsAssignment(frame, args);
asmjit::Label LoopMBlocks = a->newLabel();
// asmjit::Label LoopOBlocks = a->newLabel();
// asmjit::Label LoopNBlocks = a->newLabel();
x86::Gp buffer_B_saved = a->gpz(10);
x86::Gp C_Offset = a->gpz(11);
// x86::Gp B_pf_saved = a->gpz(12);
x86::Gp iIdx = a->gpz(13);
// x86::Gp jIdx = a->gpz(14);
x86::Gp kIdx = a->gpz(15);
// x86::Gp B_pf = a->gpz(8);
VecRegT oneReg(numRegs - 3);
gen16BitVectorOne<instSet, VecRegT>(a, oneReg);
a->imul(ldcReg, ldcReg, static_cast<asmjit::Imm>(sizeof(int32_t)));
// a->xor_(C_Offset.r32(), C_Offset.r32());
// a->mov(B_pf_saved, B_pf);
int colRegs = maxNRegs;
auto issueLoopOverK = [&](int rowRegs) {
// loopKLabel: corresponds to loop "r" where r = 0
// loopK0Label: corresponds to loop "r" where r = 1
asmjit::Label LoopKLabel = a->newLabel();
asmjit::Label LoopK0Label = a->newLabel();
// Init C (result) vector registers
initCRegs(a, rowRegs, colRegs);
// Loops over K: input channel
// a.k.a this issueLoopOverK code block generates code
// corresponding to the "ich" loop of the psedo-code
a->xor_(kIdx.r32(), kIdx.r32());
a->bind(LoopKLabel);
// k is incremented by row_interleave
a->add(kIdx, static_cast<asmjit::Imm>(row_interleave));
// this ComputeBlock generates code correspondent to
// the above psedu-code since the kernel_height loop (loop "r").
// And because K[0] == 2 and IN_DIM[2] (requirement #2),
// we can unroll loop "r" here. Thus this following
// genComputeBlockDirectConv generates code for loop "r" = 0
genComputeBlockDirectConv<instSet>(
a, buffer_A, buffer_B, B_pf, rowRegs, colRegs, strideXich);
// update buffer_A address for next k iteration
a->add(
buffer_A, static_cast<asmjit::Imm>(row_interleave * sizeof(uint8_t)));
// update buffer_B address for next k iteration
a->add(buffer_B, static_cast<asmjit::Imm>(8 * sizeof(int32_t)));
a->add(B_pf, static_cast<asmjit::Imm>(8 * sizeof(int32_t)));
a->cmp(kIdx, ichXk1);
a->jl(LoopKLabel);
a->sub(buffer_A, ichXk1);
a->add(buffer_A, static_cast<asmjit::Imm>(i1Xich));
a->xor_(kIdx.r32(), kIdx.r32());
a->bind(LoopK0Label);
// k is incremented by row_interleave
a->add(kIdx, static_cast<asmjit::Imm>(row_interleave));
// this ComputeBlock generates code that corresponds
// to the kernel_height loop (loop "r") in the psedu-code above.
// And the following genComputeBlockDirectConv
// generates code for loop "r" where "r" = 1
genComputeBlockDirectConv<instSet>(
a, buffer_A, buffer_B, B_pf, rowRegs, colRegs, strideXich);
// update buffer_A address for next k iteration
a->add(
buffer_A, static_cast<asmjit::Imm>(row_interleave * sizeof(uint8_t)));
// update buffer_B address for next k iteration
a->add(buffer_B, static_cast<asmjit::Imm>(8 * sizeof(int32_t)));
a->add(B_pf, static_cast<asmjit::Imm>(8 * sizeof(int32_t)));
a->cmp(kIdx, ichXk1);
a->jl(LoopK0Label);
a->sub(buffer_A, ichXk1);
// store C matrix
storeCRegs<instSet>(a, rowRegs, colRegs, C_Offset, ldcReg, accum);
};
if (O1RegBlocks > 0) {
// move 0 to iteration variables
a->xor_(iIdx.r32(), iIdx.r32());
// iIdex loop corresponds to kernel_width loop (loop "s")
// in the direct conv loops
a->bind(LoopMBlocks);
a->inc(iIdx);
// save B_buffer address
a->mov(buffer_B_saved, buffer_B);
issueLoopOverK(mRegBlockSize);
int rowRegs = mRegBlockSize;
// reset A
a->sub(buffer_A, static_cast<asmjit::Imm>(i1Xich));
// increment A for next block
a->add(
buffer_A,
static_cast<asmjit::Imm>(rowRegs * strideXich * sizeof(uint8_t)));
// B for next block
a->mov(buffer_B, buffer_B_saved);
// increment C for next B block
// ldcReg already multiplied with 4 (sizeof(int32_t))
a->imul(
C_Offset, ldcReg, static_cast<asmjit::Imm>(rowRegs * sizeof(int8_t)));
a->add(CBase, C_Offset);
// a->add(CBase, static_cast<asmjit::Imm>(12*16*4));
// storeCRegs<instSet>(a, 12, 1, C_Offset, ldcReg, accum);
a->cmp(iIdx, O1RegBlocks);
a->jl(LoopMBlocks);
}
// generate code for remainder
if (O1RegBlocksRem > 0) {
issueLoopOverK(O1RegBlocksRem);
}
a->emitEpilog(frame);
jit_micro_kernel_fp fn;
asmjit::Error err;
{
std::unique_lock<std::mutex> lock(rtMutex_);
err = runtime().add(&fn, &code);
}
if (err) {
std::cout << "Error: in fn add" << std::endl;
return nullptr;
}
#if defined(FBGEMM_LOG_CODE)
fclose(codeLogfile);
delete codeLogger;
#endif
return fn;
});
}
/**
* Generate AVX256 instructions for storing the C registers back to the memory
* in 32-bit Accumulation kernel.
*/
template <>
template <inst_set_t instSet>
void DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::storeCRegsTrans(
x86::Emitter* a,
int rowRegs,
int colRegs,
x86::Gp C_offset,
x86::Gp o1XocReg,
x86::Gp ldcReg,
bool accum) {
using VecT = typename simd_info<instSet>::vec_reg_t;
// static constexpr int vectorLen = simd_info<instSet>::WIDTH_BYTES;
a->xor_(C_offset.r32(), C_offset.r32());
for (int i = 0; i < rowRegs; ++i) {
for (int j = 0; j < colRegs; ++j) {
if (accum) {
a->vpaddd(
VecT(i * colRegs + j),
VecT(i * colRegs + j),
x86::dword_ptr(a->zcx(), C_offset));
}
a->vmovups(x86::dword_ptr(a->zcx(), C_offset), VecT(i * colRegs + j));
a->add(C_offset, ldcReg);
}
a->add(C_offset, o1XocReg);
}
}
/**
* Generate AVX256 instructions for computing block in the rank-k update of
* 32-bit Accumulation kernel.
The function generates the register blocking code for transposed
direct convolution
// register blocking for transposed direct convolution:
// K[0] x K[1] = 12, the corresponding 12 x 8 output elements will
// be kept in the twelve avx2 registers, which is:
// out[ih + 0..r][iw + 0..s][8]
for (int r = 0; r < K[0]; ++r) {
for (int s = 0; s < K[1]; ++s) {
int oh = ih * conv_p.stride[0] + r;
int ow = iw * conv_p.stride[1] + s;
int a = input[((ih)*IN_DIM[1] + iw) * IC + icb];
int b = weight
[(((((oc / 8) * K[0] + r) * K[1] + s) * (IC / 4) + icb / 4) *
8 +
(oc % 8)) *
4 +
(icb % 4)];
out[((oh)*OUT_DIM[1] + ow) * OC + oc] += a * b;
}
}
}
*
*/
template <>
template <inst_set_t instSet>
void DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::
genComputeBlockDirectConvTrans(
x86::Emitter* a,
x86::Gp buffer_A,
x86::Gp buffer_B,
x86::Gp icReg,
x86::Gp C_offset,
int rowRegs,
int colRegs) {
// static constexpr int vectorLen = simd_info<instSet>::WIDTH_BYTES;
using VecRegT = typename simd_info<instSet>::vec_reg_t;
constexpr int numRegs = simd_info<instSet>::NUM_VEC_REGS;
// used for matrix A
VecRegT AReg(numRegs - 1);
// used for matrix B
VecRegT BReg(numRegs - 2);
// Contains 16-bit 1s
VecRegT oneReg(numRegs - 3);
// temporary register
VecRegT res1(numRegs - 4);
// load A
a->vpbroadcastd(AReg, x86::dword_ptr(buffer_A));
a->xor_(C_offset.r32(), C_offset.r32());
for (int i = 0; i < rowRegs; ++i) {
for (int j = 0; j < colRegs; ++j) {
// load B, broadcast and fmas
emitLoadDWord<instSet, VecRegT>(
a, BReg, x86::dword_ptr(buffer_B, C_offset, 3, 0));
a->vpmaddubsw(res1, AReg, BReg);
a->vpmaddwd(res1, oneReg, res1);
a->vpaddd(VecRegT(i * colRegs + j), res1, VecRegT(i * colRegs + j));
a->add(C_offset, icReg);
}
// a->prefetcht0(x86::dword_ptr(B_pf, j * vectorLen * sizeof(int8_t)));
}
}
/**
* Get or Create the AVX256 instructions for 32-bit Accumulation macro-kernel.
*
* This function implements a direct convolution kernel that is specialized
* for kernel size (2, 6)
*
* More specifically the implementation has the following prerequisites:
* * Weights has layout {OC/8, KH, KW, IC/4, 8, 4}
* * kernel size (2, 6)
* * Features are in channel last format
* * Stride[0] = 1, Stride[1] = 1 or 2
* * Padding = 0
*
* mRegBlockSize = 12: the number of avx2 registers for output
* nRegBlockSize = 8: the # of output elements in one avx2 register
* row_interleave = 4: the horizontal reduction size for vpmaddubsw instruction
* stride: stride[1], 1 or 2. we stride[0] = 1
* ic: input channel
* i1: input_width: IN_DIM[1]
* ldcReg: leading dimension of output, a.k.a OC
* o1Xoc: output width multiply output channel: OUT_DIM[1] x OC
*
* The kernel implements the following algorithm:
for (int oc = 0; oc < OC; oc++) {
for (int ih = 0; ih < IN_DIM[0]; ++ih) {
for (int iw = 0; iw < IN_DIM[1]; iw++) {
// L1 blocking
for (int icb = 0; icb < IC; icb+=4) {
// register blocking:
// K[0] x K[1] = 12, the corresponding 12 x 8 output elements will
// be kept in the twelve avx2 registers, which is:
// out[ih + 0..r][iw + 0..s][8]
for (int r = 0; r < K[0]; ++r) {
for (int s = 0; s < K[1]; ++s) {
for (int _icb = icb ; _icb < icb + 4; _icb ++) {
int oh = ih * conv_p.stride[0] + r;
int ow = iw * conv_p.stride[1] + s;
int a = input[((ih)*IN_DIM[1] + iw) * IC + icb];
int b = weight
[(((((oc / 8) * K[0] + r) * K[1] + s) * (IC / 4) + icb / 4) *
8 +
(oc % 8)) *
4 +
(icb % 4)];
out[((oh)*OUT_DIM[1] + ow) * OC + oc] += a * b;
// if we get rid of the brackets, and substitude corresponding
variables:
// out[ih * stride0 * o1Xoc + r * o1Xoc + iw * ldcReg + oc]
// input[ih * i1 * ic + iw * ic + icb]
}
}
}
}
} // for each ic
} // for each s
} // for each r
*
*/
/**
* Get or Create the AVX256 instructions for 32-bit Accumulation macro-kernel.
*
*/
template <>
template <inst_set_t instSet>
DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::
jit_micro_kernel_fp_convT
DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::
getOrCreateDirectConvTrans(
bool accum,
int32_t stride,
int32_t numColRegs) {
using VecRegT = typename simd_info<instSet>::vec_reg_t;
constexpr int numRegs = simd_info<instSet>::NUM_VEC_REGS;
static constexpr int vectorLen = simd_info<instSet>::WIDTH_BYTES;
std::tuple<bool, int, int, int> kernelSig;
// int ichSize = 32;
int mRowRegBlockSize = 2;
int mColRegBlockSize = numColRegs;
int mRegBlockSize = mRowRegBlockSize * mColRegBlockSize;
int nRegBlockSize = 8;
// int nRegBlockSizeMin;
int row_interleave = 4;
kernelSig = std::make_tuple(accum, stride, mRegBlockSize, nRegBlockSize);
return codeCacheT_.getOrCreate(kernelSig, [&]() -> jit_micro_kernel_fp_convT {
asmjit::CodeHolder code;
code.init(runtime().environment());
x86::Assembler assembler(&code);
x86::Emitter* a = assembler.as<x86::Emitter>();
#if defined(FBGEMM_LOG_CODE)
// generated code logging
FILE* codeLogfile = fopen(
getCodeLoggingFile<instSet>(accum, stride, mRegBlockSize, nRegBlockSize)
.c_str(),
"w");
asmjit::FileLogger* codeLogger = new asmjit::FileLogger(codeLogfile);
if (codeLogger) {
code.setLogger(codeLogger);
}
#endif
const int maxMRegs = mRegBlockSize;
(void)maxMRegs; // Suppress unused variable warning
const int maxNRegs = nRegBlockSize * row_interleave / vectorLen;
assert(
maxMRegs * maxNRegs <= numRegs - 4 &&
"MRegs x NRegs is above available registers (MAX_REGS - 4)");
// arguments to the function created
x86::Gp buffer_A = a->zdi();
x86::Gp buffer_B = a->zsi();
x86::Gp CBase = a->zcx();
x86::Gp ic = a->gpz(8);
x86::Gp ldcReg = a->gpz(9);
x86::Gp o1Xoc = a->gpz(10);
x86::Gp i1 = a->gpz(11);
asmjit::FuncDetail func;
func.init(
asmjit::FuncSignatureT<
void,
uint8_t*,
int8_t*,
int32_t*,
int,
int,
int,
int>(asmjit::CallConvId::kHost),
a->environment());
asmjit::FuncFrame frame;
frame.init(func);
auto dirtyVecRegs = asmjit::Support::bitMask(0, 1, 2, 3, 4, 5, 6, 7) |
asmjit::Support::bitMask(8, 9, 10, 11, 12, 13, 14, 15);
if (numRegs >= 16) {
dirtyVecRegs |= asmjit::Support::bitMask(16, 17, 18, 19, 20, 21, 22, 23) |
asmjit::Support::bitMask(24, 25, 26, 27, 28, 29, 30, 31);
}
frame.setDirtyRegs(asmjit::RegGroup::kVec, dirtyVecRegs);
frame.setDirtyRegs(
asmjit::RegGroup::kGp,
asmjit::Support::bitMask(8, 9, 10, 11, 12, 13, 14, 15));
asmjit::FuncArgsAssignment args(&func);
args.assignAll(buffer_A, buffer_B, CBase, ic, ldcReg, o1Xoc, i1);
args.updateFuncFrame(frame);
frame.finalize();
a->emitProlog(frame);
a->emitArgsAssignment(frame, args);
asmjit::Label LoopMBlocks = a->newLabel();
x86::Gp C_offset = a->gpz(12);
x86::Gp buffer_B_saved = a->gpz(13);
x86::Gp iIdx = a->gpz(14);
x86::Gp kIdx = a->gpz(15);
VecRegT oneReg(numRegs - 3);
gen16BitVectorOne<instSet, VecRegT>(a, oneReg);
a->imul(ldcReg, ldcReg, static_cast<asmjit::Imm>(sizeof(int32_t)));
int colRegs = maxNRegs;
auto issueLoopOverK = [&](int rowRegs) {
asmjit::Label LoopKLabel = a->newLabel();
// Init C (result) vector registers
initCRegs(a, rowRegs, colRegs);
// Loops over K: input channel
a->xor_(kIdx.r32(), kIdx.r32());
a->bind(LoopKLabel);
// k is incremented by row_interleave
a->add(kIdx, 4);
genComputeBlockDirectConvTrans<instSet>(
a,
buffer_A,
buffer_B,
ic,
C_offset,
mRowRegBlockSize,
mColRegBlockSize);
// update buffer_A address for next k iteration
a->add(
buffer_A, static_cast<asmjit::Imm>(row_interleave * sizeof(uint8_t)));
// update buffer_B address for next k iteration
a->add(buffer_B, static_cast<asmjit::Imm>(8 * sizeof(int32_t)));
a->cmp(kIdx, ic);
a->jl(LoopKLabel);
// store C matrix
storeCRegsTrans<instSet>(
a,
mRowRegBlockSize,
mColRegBlockSize,
C_offset,
o1Xoc,
ldcReg,
accum);
};
{
// move 0 to iteration variables
a->xor_(iIdx.r32(), iIdx.r32());
a->bind(LoopMBlocks);
a->inc(iIdx);
// save B_buffer address
a->mov(buffer_B_saved, buffer_B);
issueLoopOverK(mRegBlockSize);
// B for next block
a->mov(buffer_B, buffer_B_saved);
// increment C for next B block
a->imul(
C_offset,
ldcReg,
static_cast<asmjit::Imm>(stride)); // ldcReg already multiplied by 4
a->add(CBase, C_offset);
a->cmp(iIdx, i1);
a->jl(LoopMBlocks);
}
a->emitEpilog(frame);
jit_micro_kernel_fp_convT fn;
asmjit::Error err;
{
std::unique_lock<std::mutex> lock(rtMutex_);
err = runtime().add(&fn, &code);
}
if (err) {
std::cout << "Error: in fn add" << std::endl;
return nullptr;
}
#if defined(FBGEMM_LOG_CODE)
fclose(codeLogfile);
delete codeLogger;
#endif
return fn;
});
}
/**
* Instantiate the inst_set_t::avx512 instructions for store kernel.
*
*/
template void DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::
storeCRegs<inst_set_t::avx512>(
x86::Emitter* a,
int rowRegs,
int colRegs,
x86::Gp C_Offset,
x86::Gp ldcReg,
bool accum);
/**
* Instantiate the inst_set_t::avx512_ymm instructions for store kernel.
*
*/
template void DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::
storeCRegs<inst_set_t::avx512_ymm>(
x86::Emitter* a,
int rowRegs,
int colRegs,
x86::Gp C_Offset,
x86::Gp ldcReg,
bool accum);
/**
* Instantiate the inst_set_t::avx2 instructions for store kernel.
*
*/
template void DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::
storeCRegs<inst_set_t::avx2>(
x86::Emitter* a,
int rowRegs,
int colRegs,
x86::Gp C_Offset,
x86::Gp ldcReg,
bool accum);
/**
* Instantiate the inst_set_t::avx2 instructions for store kernel.
*
*/
template void DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::
storeCRegsTrans<inst_set_t::avx512>(
x86::Emitter* a,
int rowRegs,
int colRegs,
x86::Gp C_offset,
x86::Gp o1XocReg,
x86::Gp ldcReg,
bool accum);
/**
* Instantiate the inst_set_t::avx2 instructions for store kernel.
*
*/
template void DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::
storeCRegsTrans<inst_set_t::avx512_ymm>(
x86::Emitter* a,
int rowRegs,
int colRegs,
x86::Gp C_offset,
x86::Gp o1XocReg,
x86::Gp ldcReg,
bool accum);
/**
* Instantiate the inst_set_t::avx2 instructions for store kernel.
*
*/
template void DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::
storeCRegsTrans<inst_set_t::avx2>(
x86::Emitter* a,
int rowRegs,
int colRegs,
x86::Gp C_offset,
x86::Gp o1XocReg,
x86::Gp ldcReg,
bool accum);
/**
* Instantiate the AVX2 instructions for 32-bit Accumulation macro-kernel.
*
*/
template DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::
jit_micro_kernel_fp
DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::
getOrCreateDirectConv<inst_set_t::avx2>(
bool accum,
int32_t O1,
int32_t i1Xich,
int32_t strideXich);
/**
* Instantiate the AVX2 instructions for 32-bit Accumulation macro-kernel.
*
*/
template DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::
jit_micro_kernel_fp_convT
DirectConvCodeGenBase<uint8_t, int8_t, int32_t, int32_t>::
getOrCreateDirectConvTrans<inst_set_t::avx2>(
bool accum,
int32_t stride,
int32_t numColRegs);
} // namespace fbgemm