forked from pytorch/FBGEMM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GroupwiseConvAcc32Avx2.cc
261 lines (243 loc) · 9.49 KB
/
GroupwiseConvAcc32Avx2.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree.
*/
#define FBGEMM_EXPORTS
#include <asmjit/asmjit.h>
#include "./CodeGenHelpers.h"
#include "./GroupwiseConv.h"
#include "fbgemm/Fbgemm.h"
namespace fbgemm {
using namespace std;
namespace x86 = asmjit::x86;
GCONV_INST_DEF_AVX2_HEADER
GenConvKernel<SPATIAL_DIM, INST_SET>::genConstForPermutations(x86::Emitter* a) {
if (this->C_per_G_ == 4) {
x86::Gp permute_const_reg = a->gpz(12);
x86::Xmm const_reg_xmm = x86::xmm11;
// We have 1st group in even lanes and 2nd group in odd lanes.
// Permute to put 1st group to lower 128-bit and 2nd group in upper
// 128-bit.
// load 7, 5, 3, 1, 6, 4, 2, 0 in a 64-bit reg
a->mov(permute_const_reg, static_cast<asmjit::Imm>(0x0705030106040200));
a->movq(const_reg_xmm, permute_const_reg);
// Zero extend 8 packed 8-bit integers in the low 8 bytes of const_reg_xmm
// to 8 packed 32-bit integers in stPermReg_V_
a->vpmovzxbd(stPermReg_V_, const_reg_xmm);
} else {
// this->C_per_G_ == 2
x86::Gp permute_const_reg = a->gpz(12);
x86::Xmm const_reg_xmm = x86::xmm11;
// We have 1st group in position 0 and 4, 2nd group 1 and 5 and so on.
// Permute to put 1st group to lower 64-bit and 2nd group to next
// 64-bit and so on.
// load 7, 3, 6, 2, 5, 1, 4, 0 in a 64-bit reg
a->mov(permute_const_reg, static_cast<asmjit::Imm>(0x0703060205010400));
a->movq(const_reg_xmm, permute_const_reg);
a->vpmovzxbd(stPermReg_V_, const_reg_xmm);
}
}
GCONV_INST_DEF_AVX2_HEADER
GenConvKernel<SPATIAL_DIM, INST_SET>::genForLoadingWeights(x86::Emitter* a) {
using WRegs = x86::Ymm;
int paddedICPerG = (this->C_per_G_ + 3) / 4 * 4;
// load weights
for (int r = 0; r < this->R_; ++r) {
for (int s = 0; s < this->S_; ++s) {
// For other cases, weights are too big to be kept in registers
// and are loaded as they are used.
if (this->C_per_G_ == 4 || this->C_per_G_ == 2) {
a->vmovaps(
WRegs(r * this->S_ + s),
x86::dword_ptr(
wghts_R_,
(r * this->S_ + s) * this->K_per_G_ * GTogether_ *
paddedICPerG * sizeof(int8_t)));
}
}
}
}
GCONV_INST_DEF_AVX2_HEADER GenConvKernel<SPATIAL_DIM, INST_SET>::storeResult(
x86::Emitter* a) {
if (GTogether_ > 1) {
// store with permutation
a->vpermd(x86::Ymm(9), stPermReg_V_, x86::Ymm(9));
if (this->accum_) {
a->vpaddd(x86::Ymm(9), x86::Ymm(9), x86::dword_ptr(out_acts_R_));
}
a->vmovups(x86::dword_ptr(out_acts_R_), x86::Ymm(9));
} else {
// horizontal add and store
if (this->C_per_G_ == 8) {
a->vphaddd(x86::Ymm(9), x86::Ymm(9), x86::Ymm(8));
a->vpermq(x86::Ymm(9), x86::Ymm(9), static_cast<asmjit::Imm>(0xd8));
if (this->accum_) {
a->vpaddd(x86::Ymm(9), x86::Ymm(9), x86::dword_ptr(out_acts_R_));
}
a->vmovups(x86::dword_ptr(out_acts_R_), x86::Ymm(9));
} else if (this->K_per_G_ == 16) {
a->vphaddd(x86::Ymm(9), x86::Ymm(9), x86::Ymm(8));
a->vpermq(x86::Ymm(9), x86::Ymm(9), static_cast<asmjit::Imm>(0xd8));
a->vphaddd(x86::Ymm(7), x86::Ymm(7), x86::Ymm(6));
a->vpermq(x86::Ymm(7), x86::Ymm(7), static_cast<asmjit::Imm>(0xd8));
a->vphaddd(x86::Ymm(5), x86::Ymm(5), x86::Ymm(4));
a->vpermq(x86::Ymm(5), x86::Ymm(5), static_cast<asmjit::Imm>(0xd8));
a->vphaddd(x86::Ymm(3), x86::Ymm(3), x86::Ymm(2));
a->vpermq(x86::Ymm(3), x86::Ymm(3), static_cast<asmjit::Imm>(0xd8));
a->vphaddd(x86::Ymm(9), x86::Ymm(9), x86::Ymm(7));
a->vpermq(x86::Ymm(9), x86::Ymm(9), static_cast<asmjit::Imm>(0xd8));
a->vphaddd(x86::Ymm(5), x86::Ymm(5), x86::Ymm(3));
a->vpermq(x86::Ymm(5), x86::Ymm(5), static_cast<asmjit::Imm>(0xd8));
if (this->accum_) {
a->vpaddd(x86::Ymm(9), x86::Ymm(9), x86::dword_ptr(out_acts_R_));
a->vpaddd(x86::Ymm(5), x86::Ymm(5), x86::dword_ptr(out_acts_R_, 32));
}
a->vmovups(x86::dword_ptr(out_acts_R_), x86::Ymm(9));
a->vmovups(x86::dword_ptr(out_acts_R_, 32), x86::Ymm(5));
}
}
}
GCONV_INST_DEF_AVX2_HEADER GenConvKernel<SPATIAL_DIM, INST_SET>::storeOffset(
x86::Emitter* a) {
switch (this->C_per_G_) {
case 2:
// store 128-bits containing rowoffset for four groups
if (this->accum_) {
a->paddd(rowOffsetReg_V_.half(), x86::dword_ptr(row_offset_R_));
}
a->vmovdqu(x86::dword_ptr(row_offset_R_), rowOffsetReg_V_.half());
break;
case 4:
// store 64-bits containing rowoffset for two groups
if (this->accum_) {
a->vmovq(tmpReg1_V_.half(), x86::dword_ptr(row_offset_R_));
a->paddd(rowOffsetReg_V_.half(), tmpReg1_V_.half());
}
a->vmovq(x86::dword_ptr(row_offset_R_), rowOffsetReg_V_.half());
break;
case 8:
if (this->accum_) {
a->vmovd(tmpReg1_V_.half(), x86::dword_ptr(row_offset_R_));
a->paddd(rowOffsetReg_V_.half(), tmpReg1_V_.half());
}
a->vmovd(x86::dword_ptr(row_offset_R_), rowOffsetReg_V_.half());
break;
case 16:
// rowOffsetReg_V_[0:63] has sum for first 8 and
// rowOffsetReg_V_[64:127] has sum for second 8
// execute vphaddd twice to sum the two
a->vphaddd(rowOffsetReg_V_, rowOffsetReg_V_, rowOffsetReg_V_);
a->vphaddd(rowOffsetReg_V_, rowOffsetReg_V_, rowOffsetReg_V_);
if (this->accum_) {
a->vmovd(tmpReg1_V_.half(), x86::dword_ptr(row_offset_R_));
a->paddd(rowOffsetReg_V_.half(), tmpReg1_V_.half());
}
a->vmovd(x86::dword_ptr(row_offset_R_), rowOffsetReg_V_.half());
break;
default:
assert(0 && "not supported case");
}
}
GCONV_INST_DEF_AVX2_HEADER
GenConvKernel<SPATIAL_DIM, INST_SET>::genForSingleFilterPoint(
x86::Emitter* a,
int r,
int s,
int act_s,
bool use_zero_reg) {
using WRegs = x86::Ymm;
if (GTogether_ > 1) {
if (this->C_per_G_ == 2) { // group together = 4
if (use_zero_reg) {
a->vmovapd(actReg_V_, zeroPTReg_V_); // 32 * 8 bit zero points
} else {
a->vbroadcastsd( // 64 bits broadcast, 2(C_per_g) * 4 (g_together) and
// broadcast them to align with weights layout
actReg_V_,
x86::word_ptr(in_acts_R_, (act_s * this->C_) * sizeof(uint8_t)));
}
// 8 * 16 bit activation to 8 * 32 bit activation( C_per_G = 2)
// zero extend because vpmaddubsw and vpmaddwd together sum 4 consecutive
// elements
a->vpmovzxwd(actReg_V_, actReg_V_.half());
} else if (this->C_per_G_ == 4) { // group together = 2
if (use_zero_reg) {
a->vmovapd(actReg_V_, zeroPTReg_V_); // 32 * 8 bit zero points
} else {
a->vbroadcastsd(
actReg_V_,
x86::dword_ptr(in_acts_R_, act_s * this->C_ * sizeof(uint8_t)));
}
}
// row offset
if (this->needRowOffset_) {
genU8Sum4<INST_SET>(
a, actReg_V_, rowOffsetReg_V_, oneReg16Bit_V_, tmpReg1_V_);
}
// 32 * int8 weight product 32 * uint8 activation -> 8
// output(K_per_g * group_together)
genU8I8S32FMA<INST_SET>(
a,
actReg_V_,
WRegs(r * this->S_ + s),
x86::Ymm(9),
oneReg16Bit_V_,
tmpReg1_V_);
} else {
if (this->C_per_G_ == 8) {
if (use_zero_reg) {
a->vmovapd(actReg_V_, zeroPTReg_V_);
} else {
a->vbroadcastsd(
actReg_V_,
x86::qword_ptr(in_acts_R_, act_s * this->C_ * sizeof(uint8_t)));
}
} else {
// this->C_per_G_ == 16
if (use_zero_reg) {
a->vmovapd(actReg_V_, zeroPTReg_V_);
} else {
a->vbroadcasti128(
actReg_V_,
x86::oword_ptr(in_acts_R_, act_s * this->C_ * sizeof(uint8_t)));
}
}
// row offset
if (this->needRowOffset_) {
genU8Sum8(a, actReg_V_, rowOffsetReg_V_, tmpReg1_V_);
}
int kLoopMultiplier = 32 / this->C_per_G_;
for (int k = 0; k < kLoopIters_; ++k) {
a->vmovaps(
WRegs(0),
x86::dword_ptr(
wghts_R_,
(((r * this->S_ + s) * this->K_per_G_) + k * kLoopMultiplier) *
this->C_per_G_ * sizeof(int8_t)));
// FMA result is not final reduction on C_per_G, producing 8 output in
// which consectutive 2 elements if summedforms one final output over
// K_Per_G dimension
genU8I8S32FMA<INST_SET>(
a, actReg_V_, WRegs(0), x86::Ymm(9 - k), oneReg16Bit_V_, tmpReg1_V_);
}
}
}
#define GENCONVKERNEL_FUNCS(S, IN) \
template void GenConvKernel<S, IN>::genForLoadingWeights<IN>( \
x86::Emitter * a); \
template void GenConvKernel<S, IN>::genConstForPermutations<IN>( \
x86::Emitter * a); \
template void GenConvKernel<S, IN>::genForSingleFilterPoint<IN>( \
x86::Emitter * a, int r, int s, int act_s, bool use_zero_reg); \
template void GenConvKernel<S, IN>::storeResult<IN>(x86::Emitter * a); \
template void GenConvKernel<S, IN>::storeOffset<IN>(x86::Emitter * a);
GENCONVKERNEL_FUNCS(1, inst_set_t::avx2)
GENCONVKERNEL_FUNCS(2, inst_set_t::avx2)
GENCONVKERNEL_FUNCS(3, inst_set_t::avx2)
#undef GENCONVKERNEL_FUNCS
template class GenConvKernel<1, inst_set_t::avx2>;
template class GenConvKernel<2, inst_set_t::avx2>;
template class GenConvKernel<3, inst_set_t::avx2>;
} // namespace fbgemm