Skip to content

Latest commit

 

History

History
49 lines (25 loc) · 1.16 KB

README.md

File metadata and controls

49 lines (25 loc) · 1.16 KB

weakCOPA

The implementation of the paper Doing Good or Doing Right? Exploring the Weakness of Commonsense Causal Reasoning Models (ACL2021).

Install requirements

conda create -n weakCOPA python=3.7

conda activate weakCOPA

Download the torch==1.6.0+cu92

pip install torch-1.6.0+cu92-cp37-cp37m-linux_x86_64.whl

pip install -r requirements.txt

Preprocessing

python preprocess.py

  • get the train/dev/test spilts and test-easy, test-hard set;

  • get the challenging set in EXP1: Perturbation with Distractors

    data/test_adv_rprandom_copa.csv

    data/test_adv_rpwrong_copa.csv

  • get the challenging set in EXP2: Masking Question Type

    data/test_adv_blind_all_copa.csv

BCOPA-CE Test Set

data/test_ce&ce_reverse.csv (csv)

or

data/BCOPA-CE.xml (xml)

Train

python train.py [model_shortcut] [seed] [adv type] [aug_data]

eg.

​ finetuning DeBERTa with regularized loss: python train.py db-l 436 adv 0

​ finetuning DeBERTa with augmented BCOPA set: python train.py db-l 436 noadv bcopa