forked from fengdu78/Coursera-ML-AndrewNg-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
3 - 6 - Inverse and Transpose (11 min).srt
1601 lines (1281 loc) · 27.9 KB
/
3 - 6 - Inverse and Transpose (11 min).srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1
00:00:00,310 --> 00:00:01,540
In this video, I want to
在这一讲中
(字幕整理:中国海洋大学 黄海广,[email protected] )
2
00:00:01,590 --> 00:00:02,885
tell you about a couple of special
我将介绍一些特殊的矩阵运算
3
00:00:02,885 --> 00:00:04,848
matrix operations, called the
也就是矩阵的逆运算
4
00:00:04,848 --> 00:00:07,430
matrix inverse and the matrix transpose operation.
以及矩阵的转置运算
5
00:00:08,740 --> 00:00:10,312
Let's start by talking about matrix
首先我们从逆矩阵开始
6
00:00:10,312 --> 00:00:12,928
inverse, and as
同往常一样
7
00:00:12,940 --> 00:00:14,516
usual we'll start by thinking about
我们依然先思考一下
8
00:00:14,516 --> 00:00:17,248
how it relates to real numbers.
矩阵运算和实数运算的关系
9
00:00:17,280 --> 00:00:18,803
In the last video, I said
在上一段视频中
10
00:00:18,803 --> 00:00:20,625
that the number one plays the
我讲过 在实数空间中
11
00:00:20,625 --> 00:00:24,570
role of the identity in
数字1扮演了单位矩阵的角色
12
00:00:24,590 --> 00:00:26,059
the space of real numbers because
因为1和任何数相乘
13
00:00:26,070 --> 00:00:28,851
one times anything is equal to itself.
其结果都是那个数本身
14
00:00:28,860 --> 00:00:30,270
It turns out that real numbers
我们都知道
15
00:00:30,270 --> 00:00:31,642
have this property that very
实数有这样的一个性质
16
00:00:31,642 --> 00:00:33,093
number have an, that
那就是每一个实数
17
00:00:33,120 --> 00:00:34,635
each number has an inverse,
都有一个倒数
18
00:00:34,635 --> 00:00:36,637
for example, given the number
举个例子
19
00:00:36,660 --> 00:00:38,552
three, there exists some
对于数字3
20
00:00:38,552 --> 00:00:40,132
number, which happens to
一定存在某个数
21
00:00:40,132 --> 00:00:41,544
be three inverse so that
是3的倒数
22
00:00:41,544 --> 00:00:43,798
that number times gives you
这个倒数乘以3
23
00:00:43,798 --> 00:00:46,458
back the identity element one.
其乘积将得到单位元1
24
00:00:46,480 --> 00:00:50,727
And so to me, inverse of course this is just one third.
当然 这里的逆也就是三分之一
25
00:00:50,727 --> 00:00:53,236
And given some other number,
而对于另一个数
26
00:00:53,236 --> 00:00:55,360
maybe twelve there is
比如说12
27
00:00:55,360 --> 00:00:57,312
some number which is the
那么一定有某个数
28
00:00:57,340 --> 00:00:59,464
inverse of twelve written as
是12的倒数
29
00:00:59,464 --> 00:01:01,600
twelve to the minus one, or
也可以写作12的-1次方
30
00:01:01,600 --> 00:01:03,582
really this is just one twelve.
其实也就是1/12
31
00:01:03,582 --> 00:01:07,092
So that when you multiply these two things together.
因此当你将这两个数相乘的时候
32
00:01:07,092 --> 00:01:09,292
the product is equal to
其结果依然是等于1
33
00:01:09,292 --> 00:01:12,367
the identity element one again.
或者可以称为单位元1
34
00:01:12,370 --> 00:01:13,838
Now it turns out that in
然而事实上 在实数空间内
35
00:01:13,860 --> 00:01:17,154
the space of real numbers, not everything has an inverse.
并非所有实数都有倒数
36
00:01:17,154 --> 00:01:19,148
For example the number zero
比如说数字0就没有倒数
37
00:01:19,160 --> 00:01:20,981
does not have an inverse, right?
是吧?
38
00:01:20,981 --> 00:01:25,410
Because zero's a zero inverse, one over zero that's undefined.
因为0的倒数 也就是1/0 是没有意义的
39
00:01:25,460 --> 00:01:29,862
Like this one over zero is not well defined.
像这里 1除以0是未被定义的
40
00:01:30,100 --> 00:01:31,419
And what we want to
在这一节剩下的内容中
41
00:01:31,450 --> 00:01:32,453
do, in the rest of this
我们将要解决的一个问题
42
00:01:32,453 --> 00:01:33,835
slide, is figure out what does
是求解一个矩阵的逆
43
00:01:33,835 --> 00:01:38,341
it mean to compute the inverse of a matrix.
是什么意思
44
00:01:39,253 --> 00:01:41,718
Here's the idea: If
概念如下
45
00:01:41,750 --> 00:01:43,198
A is a n by
如果A是一个矩阵
46
00:01:43,200 --> 00:01:45,078
n matrix, and it
其维度为m行m列
47
00:01:45,078 --> 00:01:46,320
has an inverse, I will say
那么A矩阵有其逆矩阵
48
00:01:46,350 --> 00:01:48,487
a bit more about that later, then
后面我还会详细介绍这一点
49
00:01:48,487 --> 00:01:49,927
the inverse is going to
那么这个逆矩阵
50
00:01:49,927 --> 00:01:51,668
be written A to the
可以写成
51
00:01:51,668 --> 00:01:54,186
minus one and A
矩阵A的-1次方
52
00:01:54,186 --> 00:01:55,798
times this inverse, A to
同时 矩阵A乘以它的逆矩阵
53
00:01:55,798 --> 00:01:57,045
the minus one, is going to
A的-1次方
54
00:01:57,050 --> 00:01:59,395
equal to A inverse times
也等于A的-1次方乘以A
55
00:01:59,395 --> 00:02:00,741
A, is going to
其结果将等于
56
00:02:00,741 --> 00:02:04,088
give us back the identity matrix.
单位矩阵
57
00:02:04,088 --> 00:02:04,958
Okay?
对吧?
58
00:02:04,960 --> 00:02:07,037
Only matrices that are
只有维度是m行m列的矩阵
59
00:02:07,060 --> 00:02:09,848
m by m for some the idea of M having inverse.
才有其逆矩阵
60
00:02:09,870 --> 00:02:11,692
So, a matrix is
因此
61
00:02:11,692 --> 00:02:13,010
M by M, this is also
如果一个矩阵的维度是m行m列
62
00:02:13,040 --> 00:02:16,055
called a square matrix and
那么这个矩阵也可以称之为方阵
63
00:02:16,055 --> 00:02:18,222
it's called square because
称其为方阵是因为
64
00:02:18,222 --> 00:02:24,852
the number of rows is equal to the number of columns.
这类矩阵的行数和列数相等
65
00:02:24,852 --> 00:02:26,516
Right and it turns out
好的
66
00:02:26,530 --> 00:02:29,518
only square matrices have inverses,
实际上只有方阵才有逆矩阵
67
00:02:29,520 --> 00:02:31,148
so A is a square
所以 如果A是一个方阵
68
00:02:31,148 --> 00:02:32,973
matrix, is m by m,
其维度是m行m列
69
00:02:33,020 --> 00:02:37,198
on inverse this equation over here.
那么它将满足这个等式
70
00:02:37,340 --> 00:02:39,568
Let's look at a concrete example,
接下来我们看一个具体的例子
71
00:02:39,568 --> 00:02:41,530
so let's say I
假设说
72
00:02:41,580 --> 00:02:45,090
have a matrix, three, four,
我们有这样一个矩阵 3 4
73
00:02:45,120 --> 00:02:48,080
two, sixteen.
2 16
74
00:02:48,080 --> 00:02:49,535
So this is a two by
这是一个2行2列的矩阵
75
00:02:49,535 --> 00:02:51,788
two matrix, so it's
因此这个矩阵
76
00:02:51,810 --> 00:02:53,159
a square matrix and so this
是一个方阵
77
00:02:53,160 --> 00:02:55,442
may just could have an and
因此这个矩阵可以有它的逆矩阵
78
00:02:55,480 --> 00:02:57,733
it turns out that I
假如说
79
00:02:57,750 --> 00:02:59,308
happen to know the inverse
这个矩阵的逆矩阵是
80
00:02:59,310 --> 00:03:00,810
of this matrix is zero point
0.4
81
00:03:00,840 --> 00:03:02,675
four, minus zero point
-0.1
82
00:03:02,675 --> 00:03:04,485
one, minus zero point
-0.05
83
00:03:04,520 --> 00:03:08,687
zero five, zero zero seven five.
0.075
84
00:03:08,750 --> 00:03:10,267
And if I take this matrix
那么如果我用这个逆矩阵
85
00:03:10,267 --> 00:03:12,273
and multiply these together it
和原来的矩阵相乘
86
00:03:12,273 --> 00:03:13,598
turns out what I get
那么
87
00:03:13,620 --> 00:03:15,595
is the two by
我们将得到的结果
88
00:03:15,595 --> 00:03:18,324
two identity matrix, I,
是一个2行2列的单位矩阵I
89
00:03:18,350 --> 00:03:20,542
this is I two by two.
这就是矩阵I 维度是2行2列
90
00:03:20,558 --> 00:03:21,365
Okay?
没问题吧?
91
00:03:21,365 --> 00:03:22,308
And so on this slide,
在这张幻灯片上
92
00:03:22,308 --> 00:03:24,416
you know this matrix is
这个矩阵就是矩阵A
93
00:03:24,416 --> 00:03:27,199
the matrix A, and this matrix is the matrix A-inverse.
这个矩阵就是A的逆矩阵
94
00:03:27,199 --> 00:03:28,622
And it turns out
结果是
95
00:03:28,622 --> 00:03:29,835
if that you are computing A
如果你要计算A乘以A的逆矩阵
96
00:03:29,835 --> 00:03:31,385
times A-inverse, it turns out
或者说
97
00:03:31,410 --> 00:03:32,742
if you compute A-inverse times
A的逆矩阵乘以A
98
00:03:32,750 --> 00:03:36,821
A you also get back the identity matrix.
你将得到一个单位矩阵
99
00:03:36,852 --> 00:03:38,640
So how did I
那么
100
00:03:38,640 --> 00:03:39,760
find this inverse or how
怎样得到这个逆矩阵呢
101
00:03:39,920 --> 00:03:42,698
did I come up with this inverse over here?
或者说我是怎么知道这个逆矩阵的呢?
102
00:03:42,730 --> 00:03:45,048
It turns out that sometimes
实际上有时候你可以
103
00:03:45,060 --> 00:03:46,731
you can compute inverses by hand
自己用笔算出来
104
00:03:46,760 --> 00:03:48,745
but almost no one does that these days.
但可能现在没多少人这么求逆矩阵了
105
00:03:48,780 --> 00:03:49,888
And it turns out there is
实际上我们有很多很好的软件
106
00:03:49,888 --> 00:03:52,198
very good numerical software for
可以用来进行数学运算
107
00:03:52,240 --> 00:03:55,447
taking a matrix and computing its inverse.
能很容易地对矩阵进行求逆运算
108
00:03:55,447 --> 00:03:56,369
So again, this is one of
因此 同样地
109
00:03:56,369 --> 00:03:57,310
those things where there are lots
对于这个问题
110
00:03:57,310 --> 00:03:59,450
of open source libraries that
你可以在很多主流的编程环境中实现
111
00:03:59,450 --> 00:04:00,748
you can link to from any
这些环境一般都有很多开源库
112
00:04:00,748 --> 00:04:04,973
of the popular programming languages to compute inverses of matrices.
你可以直接运用来求解逆矩阵
113
00:04:04,990 --> 00:04:06,892
Let me show you a quick example.
这里我举一个简单的例子
114
00:04:06,900 --> 00:04:08,935
How I actually computed this inverse,
来说明一下怎样求逆矩阵
115
00:04:08,940 --> 00:04:13,132
and what I did was I used software called Optive.
我将使用一个叫Octave的软件
116
00:04:13,170 --> 00:04:14,437
So let me bring that up.
打开这个软件
117
00:04:14,437 --> 00:04:17,186
We will see a lot about Optive later.
之后我们还会更多地用到Octave
118
00:04:17,186 --> 00:04:18,903
Let me just quickly show you an example.
这里我只是很快地举一个例子
119
00:04:18,910 --> 00:04:21,078
Set my matrix A to
定义一个矩阵A
120
00:04:21,078 --> 00:04:22,274
be equal to that matrix on
对它赋值为左边幻灯片上的矩阵
121
00:04:22,274 --> 00:04:24,456
the left, type three four
键入3 4 2 16
122
00:04:24,456 --> 00:04:28,080
two sixteen, so that's my matrix A right.
这就是我的A矩阵了
123
00:04:28,080 --> 00:04:29,882
This is matrix 34,
这就是矩阵 3 4
124
00:04:29,882 --> 00:04:31,141
216 that I have down
2 16
125
00:04:31,160 --> 00:04:32,773
here on the left.
也就是左边那个矩阵
126
00:04:32,773 --> 00:04:34,543
And, the software lets me compute
使用这个软件
127
00:04:34,543 --> 00:04:36,243
the inverse of A very easily.
我能够很容易得到A的逆矩阵
128
00:04:36,250 --> 00:04:39,110
It's like P over A equals this.
就像这样直接键入pinv(A)
129
00:04:39,170 --> 00:04:40,765
And so, this is right,
这样
130
00:04:40,765 --> 00:04:41,935
this matrix here on my
我们得到了结果
131
00:04:41,935 --> 00:04:43,715
four minus, on my one, and so on.
0.4 -0.1 等等
132
00:04:43,715 --> 00:04:45,308
This given the numerical
这里得到的是
133
00:04:45,350 --> 00:04:46,794
solution to what is the
A的逆矩阵的近似解
134
00:04:46,794 --> 00:04:48,350
inverse of A. So let me
我可以这样写
135
00:04:48,350 --> 00:04:50,538
just write, inverse of A
定义一个变量inverseOFA
136
00:04:50,540 --> 00:04:52,558
equals P inverse of
其值等于 pinv(A)
137
00:04:52,580 --> 00:04:55,232
A over that I
那么inverseOFA的值就是这样
138
00:04:55,232 --> 00:04:57,200
can now just verify that A
现在我们可以证明一下
139
00:04:57,200 --> 00:04:58,597
times A inverse the identity
A乘以A的逆矩阵结果是单位矩阵
140
00:04:58,597 --> 00:05:00,644
is, type A times the
键入 A 乘以
141
00:05:00,644 --> 00:05:03,390
inverse of A and
A的逆矩阵
142
00:05:03,420 --> 00:05:04,740
the result of that is
这样得到的结果
143
00:05:04,750 --> 00:05:06,513
this matrix and this is
是这样的一个矩阵
144
00:05:06,513 --> 00:05:08,708
one one on the diagonal
主对角线是1和1
145
00:05:08,740 --> 00:05:10,453
and essentially ten to
副对角线不是1
146
00:05:10,453 --> 00:05:11,582
the minus seventeen, ten to the
但是基本上10的-17次方
147
00:05:11,582 --> 00:05:13,324
minus sixteen, so Up to
10的-16次方
148
00:05:13,324 --> 00:05:14,961
numerical precision, up to
这里由于计算精度的问题
149
00:05:14,961 --> 00:05:16,012
a little bit of round off
由于计算机在寻找最佳结果时
150
00:05:16,012 --> 00:05:17,562
error that my computer
由于进行了四舍五入圆整
151
00:05:17,562 --> 00:05:21,123
had in finding optimal matrices
所以产生了一点点误差
152
00:05:21,123 --> 00:05:22,623
and these numbers off the
所以这些副对角线上的数字
153
00:05:22,623 --> 00:05:24,948
diagonals are essentially zero
实际上也近似等于0
154
00:05:24,970 --> 00:05:29,078
so A times the inverse is essentially the identity matrix.
因此矩阵A和其逆矩阵相乘的结果就是单位矩阵
155
00:05:29,100 --> 00:05:30,907
Can also verify the inverse of
我们也可以证明
156
00:05:30,907 --> 00:05:33,215
A times A is also
A的逆矩阵乘以A
157
00:05:33,215 --> 00:05:35,795
equal to the identity,
其结果也是单位矩阵
158
00:05:35,795 --> 00:05:38,183
ones on the diagonals and values
主对角线上都是1
159
00:05:38,183 --> 00:05:39,938
that are essentially zero except
副对角线上的数有小数
160
00:05:39,938 --> 00:05:40,856
for a little bit of round
但四舍五入圆整一下
161
00:05:40,856 --> 00:05:44,752
dot error on the off diagonals.
实际上其值也等于0
162
00:05:45,780 --> 00:05:47,428
If a definition that the inverse
关于逆矩阵的定义
163
00:05:47,428 --> 00:05:48,636
of a matrix is, I had
我需要强调一点
164
00:05:48,636 --> 00:05:50,333
this caveat first it must
首先
165
00:05:50,333 --> 00:05:52,367
always be a square matrix, it
矩阵必须是方阵
166
00:05:52,410 --> 00:05:54,219
had this caveat, that if
注意这里
167
00:05:54,219 --> 00:05:57,237
A has an inverse, exactly what
如果A有其逆矩阵
168
00:05:57,237 --> 00:05:58,855
matrices have an inverse
究竟什么矩阵有其逆矩阵的问题
169
00:05:58,855 --> 00:06:00,176
is beyond the scope of this
已经超出了这节线性代数复习课
170
00:06:00,200 --> 00:06:02,056
linear algebra for review that one
所讨论的范畴
171
00:06:02,056 --> 00:06:03,942
intuition you might take away
但有一点
172
00:06:03,942 --> 00:06:05,245
that just as the
你能理解的是
173
00:06:05,260 --> 00:06:06,588
number zero doesn't have an
数字0没有倒数
174
00:06:06,588 --> 00:06:08,429
inverse, it turns out
因此
175
00:06:08,440 --> 00:06:10,188
that if A is say the
如果矩阵A中
176
00:06:10,188 --> 00:06:13,457
matrix of all zeros, then
所有元素都为0
177
00:06:13,457 --> 00:06:14,791
this matrix A also does
那么这个矩阵A
178
00:06:14,791 --> 00:06:16,432
not have an inverse because there's
依然没有逆矩阵
179
00:06:16,432 --> 00:06:18,033
no matrix there's no A
因为没有这样的A矩阵
180
00:06:18,040 --> 00:06:19,821
inverse matrix so that this
能使得这个矩阵
181
00:06:19,821 --> 00:06:21,174
matrix times some other
乘以另一个矩阵
182
00:06:21,174 --> 00:06:22,225
matrix will give you the
其值能得到单位矩阵
183
00:06:22,225 --> 00:06:23,778
identity matrix so this matrix of
所以
184
00:06:23,778 --> 00:06:25,322
all zeros, and there
所有元素都为0的矩阵
185
00:06:25,322 --> 00:06:27,660
are a few other matrices with properties similar to this.
以及一些其他类似这样的矩阵
186
00:06:27,660 --> 00:06:30,843
That also don't have an inverse.
它们都没有逆矩阵
187
00:06:30,843 --> 00:06:32,492
But it turns out that
但是实际上
188
00:06:32,492 --> 00:06:33,600
in this review I don't
在这节复习课中
189
00:06:33,600 --> 00:06:35,436
want to go too deeply into what
我不想太深入地介绍
190
00:06:35,436 --> 00:06:37,108
it means matrix have an
矩阵的逆矩阵有何意义等问题
191
00:06:37,108 --> 00:06:38,765
inverse but it turns
但是实际上
192
00:06:38,765 --> 00:06:40,006
out for our machine learning
对于我们机器学习的应用来讲
193
00:06:40,006 --> 00:06:41,807
application this shouldn't be
这一点不应成为问题
194
00:06:41,830 --> 00:06:44,260
an issue or more precisely
具体来讲
195
00:06:44,280 --> 00:06:46,389
for the learning algorithms where
对于某种机器学习算法
196
00:06:46,389 --> 00:06:47,943
this may be an to namely
可能会碰到这种问题的讨论
197
00:06:47,970 --> 00:06:49,252
whether or not an inverse matrix
是否存在逆矩阵这样的问题
198
00:06:49,252 --> 00:06:50,968
appears and I will tell when
在我们碰到这种学习算法时
199
00:06:50,968 --> 00:06:51,952
we get to those learning algorithms
我再告诉你
200
00:06:51,952 --> 00:06:53,690
just what it means for an
一种算法到底有没有逆矩阵