forked from Evolving-AI-Lab/synthesizing
-
Notifications
You must be signed in to change notification settings - Fork 0
/
patchShow.py
48 lines (39 loc) · 1.33 KB
/
patchShow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import numpy as np
def normalize(img, out_range=(0.,1.), in_range=None):
if not in_range:
min_val = np.min(img)
max_val = np.max(img)
else:
min_val = in_range[0]
max_val = in_range[1]
result = np.copy(img)
result[result > max_val] = max_val
result[result < min_val] = min_val
result = (result - min_val) / (max_val - min_val) * (out_range[1] - out_range[0]) + out_range[0]
return result
def patchShow(images, out_range=(0.,1.), in_range=None, rows=0, cols=0):
num = images.shape[0]
ih = images.shape[2]
iw = images.shape[3]
if rows == 0 and cols == 0:
rows = np.ceil(np.sqrt(num*iw/ih))
if cols == 0:
cols = np.ceil(num / float(rows))
if rows == 0:
rows = np.ceil(num / float(cols))
result = np.zeros((rows*(ih+1)+1, cols*(iw+1)+1, 3))
for ind in range(num):
r,c = divmod(ind, cols)
result[r*(ih+1)+1:(r+1)*(ih+1), c*(iw+1)+1:(c+1)*(iw+1), :] = images[ind].transpose((1,2,0))
result = normalize(result, out_range, in_range)
return result
def patchShow_single(images, out_range=(0.,1.), in_range=None):
num = images.shape[0]
c = images.shape[1]
ih = images.shape[2]
iw = images.shape[3]
result = np.zeros((ih, iw, 3))
# Normalize before saving
result[:] = images[0].copy().transpose((1,2,0))
result = normalize(result, out_range, in_range)
return result