This page describes in detail how to run end to end tests on a hudi dataset that helps in improving our confidence in a release as well as perform large scale performance benchmarks.
- Test with different versions of core libraries and components such as
hdfs
,parquet
,spark
,hive
andavro
. - Generate different types of workloads across different dimensions such as
payload size
,number of updates
,number of inserts
,number of partitions
- Perform multiple types of operations such as
insert
,bulk_insert
,upsert
,compact
,query
- Support custom post process actions and validations
The Hudi test suite runs as a long running spark job. The suite is divided into the following high level components :
This component does the work of generating the workload; inserts
, upserts
etc.
Depending on the type of workload generated, data is either ingested into the target hudi dataset or the corresponding workload operation is executed. For example compaction does not necessarily need a workload to be generated/ingested but can require an execution.
The test suite supports different types of operations besides ingestion such as Hive Query execution, Clean action etc.
org.apache.hudi.integ.testsuite.HoodieTestSuiteJob.java - Entry Point of the hudi test suite job. This
class wraps all the functionalities required to run a configurable integration suite.
org.apache.hudi.integ.testsuite.HoodieTestSuiteJob.HoodieTestSuiteConfig - Config class that drives the behavior of the
integration test suite. This class extends from com.uber.hoodie.utilities.DeltaStreamerConfig. Look at
link#HudiDeltaStreamer page to learn about all the available configs applicable to your test suite.
There are 2 ways to generate a workload pattern
1.Programmatically
You can create a DAG of operations programmatically - take a look at WorkflowDagGenerator
class.
Once you're ready with the DAG you want to execute, simply pass the class name as follows:
spark-submit
...
...
--class org.apache.hudi.integ.testsuite.HoodieTestSuiteJob
--workload-generator-classname org.apache.hudi.integ.testsuite.dag.scheduler.<your_workflowdaggenerator>
...
2.YAML file
Choose to write up the entire DAG of operations in YAML, take a look at simple-deltastreamer.yaml
or
simple-deltastreamer.yaml
.
Once you're ready with the DAG you want to execute, simply pass the yaml file path as follows:
spark-submit
...
...
--class org.apache.hudi.integ.testsuite.HoodieTestSuiteJob
--workload-yaml-path /path/to/your-workflow-dag.yaml
...
The test suite can be found in the hudi-integ-test
module. Use the prepare_integration_suite.sh
script to
build
the test suite, you can provide different parameters to the script.
shell$ ./prepare_integration_suite.sh --help
Usage: prepare_integration_suite.sh
--spark-command, prints the spark command
-h, hdfs-version
-s, spark version
-p, parquet version
-a, avro version
-s, hive version
shell$ ./prepare_integration_suite.sh
....
....
Final command : mvn clean install -DskipTests
Copy over the necessary files and jars that are required to your cluster and then run the following spark-submit command after replacing the correct values for the parameters. NOTE : The properties-file should have all the necessary information required to ingest into a Hudi dataset. For more information on what properties need to be set, take a look at the test suite section under demo steps.
shell$ ./prepare_integration_suite.sh --spark-command
spark-submit --master prepare_integration_suite.sh --deploy-mode
--properties-file --class org.apache.hudi.integ.testsuite.HoodieTestSuiteJob target/hudi-integ-test-0.6
.0-SNAPSHOT.jar --source-class --source-ordering-field --input-base-path --target-base-path --target-table --props --storage-type --payload-class --workload-yaml-path --input-file-size --<deltastreamer-ingest>
Take a look at the TestHoodieTestSuiteJob
to check how you can run the entire suite using JUnit.
Start the Hudi Docker demo:
docker/setup_demo.sh
NOTE: We need to make a couple of environment changes for Hive 2.x support. This will be fixed once Hudi moves to Spark 3.x. Execute below if you are using Hudi query node in your dag. If not, below section is not required. Also, for longer running tests, go to next section.
docker exec -it adhoc-2 bash
cd /opt/spark/jars
rm /opt/spark/jars/hive*
rm spark-hive-thriftserver_2.11-2.4.4.jar
wget https://repo1.maven.org/maven2/org/apache/spark/spark-hive-thriftserver_2.12/3.0.0-preview2/spark-hive-thriftserver_2.12-3.0.0-preview2.jar
wget https://repo1.maven.org/maven2/org/apache/hive/hive-common/2.3.1/hive-common-2.3.1.jar
wget https://repo1.maven.org/maven2/org/apache/hive/hive-exec/2.3.1/hive-exec-2.3.1-core.jar
wget https://repo1.maven.org/maven2/org/apache/hive/hive-jdbc/2.3.1/hive-jdbc-2.3.1.jar
wget https://repo1.maven.org/maven2/org/apache/hive/hive-llap-common/2.3.1/hive-llap-common-2.3.1.jar
wget https://repo1.maven.org/maven2/org/apache/hive/hive-metastore/2.3.1/hive-metastore-2.3.1.jar
wget https://repo1.maven.org/maven2/org/apache/hive/hive-serde/2.3.1/hive-serde-2.3.1.jar
wget https://repo1.maven.org/maven2/org/apache/hive/hive-service/2.3.1/hive-service-2.3.1.jar
wget https://repo1.maven.org/maven2/org/apache/hive/hive-service-rpc/2.3.1/hive-service-rpc-2.3.1.jar
wget https://repo1.maven.org/maven2/org/apache/hive/shims/hive-shims-0.23/2.3.1/hive-shims-0.23-2.3.1.jar
wget https://repo1.maven.org/maven2/org/apache/hive/shims/hive-shims-common/2.3.1/hive-shims-common-2.3.1.jar
wget https://repo1.maven.org/maven2/org/apache/hive/hive-storage-api/2.3.1/hive-storage-api-2.3.1.jar
wget https://repo1.maven.org/maven2/org/apache/hive/hive-shims/2.3.1/hive-shims-2.3.1.jar
wget https://repo1.maven.org/maven2/org/json/json/20090211/json-20090211.jar
cp /opt/hive/lib/log* /opt/spark/jars/
rm log4j-slf4j-impl-2.6.2.jar
cd /opt
Copy the integration tests jar into the docker container
docker cp packaging/hudi-integ-test-bundle/target/hudi-integ-test-bundle-0.11.0-SNAPSHOT.jar adhoc-2:/opt
docker exec -it adhoc-2 /bin/bash
Clean the working directories before starting a new test:
hdfs dfs -rm -r /user/hive/warehouse/hudi-integ-test-suite/output/
hdfs dfs -rm -r /user/hive/warehouse/hudi-integ-test-suite/input/
Launch a Copy-on-Write job:
# COPY_ON_WRITE tables
=========================
## Run the following command to start the test suite
spark-submit \
--conf spark.task.cpus=1 \
--conf spark.executor.cores=1 \
--conf spark.task.maxFailures=100 \
--conf spark.memory.fraction=0.4 \
--conf spark.rdd.compress=true \
--conf spark.kryoserializer.buffer.max=2000m \
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
--conf spark.kryo.registrator=org.apache.spark.HoodieSparkKryoRegistrar \
--conf spark.memory.storageFraction=0.1 \
--conf spark.shuffle.service.enabled=true \
--conf spark.sql.hive.convertMetastoreParquet=false \
--conf spark.driver.maxResultSize=12g \
--conf spark.executor.heartbeatInterval=120s \
--conf spark.network.timeout=600s \
--conf spark.yarn.max.executor.failures=10 \
--conf spark.sql.catalogImplementation=hive \
--conf spark.driver.extraClassPath=/var/demo/jars/* \
--conf spark.executor.extraClassPath=/var/demo/jars/* \
--class org.apache.hudi.integ.testsuite.HoodieTestSuiteJob \
/opt/hudi-integ-test-bundle-0.11.0-SNAPSHOT.jar \
--source-ordering-field test_suite_source_ordering_field \
--use-deltastreamer \
--target-base-path /user/hive/warehouse/hudi-integ-test-suite/output \
--input-base-path /user/hive/warehouse/hudi-integ-test-suite/input \
--target-table table1 \
--props file:/var/hoodie/ws/docker/demo/config/test-suite/test.properties \
--schemaprovider-class org.apache.hudi.integ.testsuite.schema.TestSuiteFileBasedSchemaProvider \
--source-class org.apache.hudi.utilities.sources.AvroDFSSource \
--input-file-size 125829120 \
--workload-yaml-path file:/var/hoodie/ws/docker/demo/config/test-suite/simple-deltastreamer.yaml \
--workload-generator-classname org.apache.hudi.integ.testsuite.dag.WorkflowDagGenerator \
--table-type COPY_ON_WRITE \
--compact-scheduling-minshare 1 \
--hoodie-conf hoodie.metrics.on=true \
--hoodie-conf hoodie.metrics.reporter.type=GRAPHITE \
--hoodie-conf hoodie.metrics.graphite.host=graphite \
--hoodie-conf hoodie.metrics.graphite.port=2003 \
--clean-input \
--clean-output
Or a Merge-on-Read job:
# MERGE_ON_READ tables
=========================
## Run the following command to start the test suite
spark-submit \
--conf spark.task.cpus=1 \
--conf spark.executor.cores=1 \
--conf spark.task.maxFailures=100 \
--conf spark.memory.fraction=0.4 \
--conf spark.rdd.compress=true \
--conf spark.kryoserializer.buffer.max=2000m \
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
--conf spark.kryo.registrator=org.apache.spark.HoodieSparkKryoRegistrar \
--conf spark.memory.storageFraction=0.1 \
--conf spark.shuffle.service.enabled=true \
--conf spark.sql.hive.convertMetastoreParquet=false \
--conf spark.driver.maxResultSize=12g \
--conf spark.executor.heartbeatInterval=120s \
--conf spark.network.timeout=600s \
--conf spark.yarn.max.executor.failures=10 \
--conf spark.sql.catalogImplementation=hive \
--conf spark.driver.extraClassPath=/var/demo/jars/* \
--conf spark.executor.extraClassPath=/var/demo/jars/* \
--class org.apache.hudi.integ.testsuite.HoodieTestSuiteJob \
/opt/hudi-integ-test-bundle-0.11.0-SNAPSHOT.jar \
--source-ordering-field test_suite_source_ordering_field \
--use-deltastreamer \
--target-base-path /user/hive/warehouse/hudi-integ-test-suite/output \
--input-base-path /user/hive/warehouse/hudi-integ-test-suite/input \
--target-table table1 \
--props file:/var/hoodie/ws/docker/demo/config/test-suite/test.properties \
--schemaprovider-class org.apache.hudi.integ.testsuite.schema.TestSuiteFileBasedSchemaProvider \
--source-class org.apache.hudi.utilities.sources.AvroDFSSource \
--input-file-size 125829120 \
--workload-yaml-path file:/var/hoodie/ws/docker/demo/config/test-suite/simple-deltastreamer.yaml \
--workload-generator-classname org.apache.hudi.integ.testsuite.dag.WorkflowDagGenerator \
--table-type MERGE_ON_READ \
--compact-scheduling-minshare 1 \
--hoodie-conf hoodie.metrics.on=true \
--hoodie-conf hoodie.metrics.reporter.type=GRAPHITE \
--hoodie-conf hoodie.metrics.graphite.host=graphite \
--hoodie-conf hoodie.metrics.graphite.port=2003 \
--clean-input \
--clean-output
Graphite server is already setup (and up) in docker/setup_demo.sh
.
Open browser and access metrics at
http://localhost:80
Dashboard
http://localhost/dashboard
For long running test suite, validation has to be done differently. Idea is to run same dag in a repeated manner for N iterations. Hence "ValidateDatasetNode" is introduced which will read entire input data and compare it with hudi contents both via spark datasource and hive table via spark sql engine. Hive validation is configurable.
If you have "ValidateDatasetNode" in your dag, do not replace hive jars as instructed above. Spark sql engine does not go well w/ hive2* jars. So, after running docker setup, follow the below steps.
docker cp packaging/hudi-integ-test-bundle/target/hudi-integ-test-bundle-0.11.0-SNAPSHOT.jar adhoc-2:/opt/
docker cp docker/demo/config/test-suite/test.properties adhoc-2:/opt/
Also copy your dag of interest to adhoc-2:/opt/
docker cp docker/demo/config/test-suite/simple-deltastreamer.yaml adhoc-2:/opt/
For repeated runs, two additional configs need to be set. "dag_rounds" and "dag_intermittent_delay_mins". This means that your dag will be repeated for N times w/ a delay of Y mins between each round. Note: simple-deltastreamer.yaml already has all these configs set. So no changes required just to try it out.
Also, ValidateDatasetNode can be configured in two ways. Either with "delete_input_data" set to true or without setting the config. When "delete_input_data" is set for ValidateDatasetNode, once validation is complete, entire input data will be deleted. So, suggestion is to use this ValidateDatasetNode as the last node in the dag with "delete_input_data".
Example dag:
Insert
Upsert
ValidateDatasetNode with delete_input_data = true
If above dag is run with "dag_rounds" = 10 and "dag_intermittent_delay_mins" = 10, then this dag will run for 10 times
with 10 mins delay between every run. At the end of every run, records written as part of this round will be validated.
At the end of each validation, all contents of input are deleted.
To illustrate each round
Round1:
insert => inputPath/batch1
upsert -> inputPath/batch2
Validate with delete_input_data = true
Validates contents from batch1 and batch2 are in hudi and ensures Row equality
Since "delete_input_data" is set, deletes contents from batch1 and batch2.
Round2:
insert => inputPath/batch3
upsert -> inputPath/batch4
Validate with delete_input_data = true
Validates contents from batch3 and batch4 are in hudi and ensures Row equality
Since "delete_input_data" is set, deletes contents from batch3 and batch4.
Round3:
insert => inputPath/batch5
upsert -> inputPath/batch6
Validate with delete_input_data = true
Validates contents from batch5 and batch6 are in hudi and ensures Row equality
Since "delete_input_data" is set, deletes contents from batch5 and batch6.
.
.
If you wish to do a cumulative validation, do not set delete_input_data in ValidateDatasetNode. But remember that this may not scale beyond certain point since input data as well as hudi content's keeps occupying the disk and grows for every cycle.
Let's see an example where you don't set "delete_input_data" as part of Validation.
Insert
Upsert
ValidateDatasetNode
Here is the illustration of each round
Round1:
insert => inputPath/batch1
upsert -> inputPath/batch2
Validate: validates contents from batch1 and batch2 are in hudi and ensures Row equality
Round2:
insert => inputPath/batch3
upsert -> inputPath/batch4
Validate: validates contents from batch1 to batch4 are in hudi and ensures Row equality
Round3:
insert => inputPath/batch5
upsert -> inputPath/batch6
Validate: validates contents from batch1 and batch6 are in hudi and ensures Row equality
.
.
You could also have validations in the middle of your dag and not set the "delete_input_data". But set it only in the last node in the dag.
Round1:
insert => inputPath/batch1
upsert -> inputPath/batch2
Validate: validates contents from batch1 and batch2 are in hudi and ensures Row equality
insert => inputPath/batch3
upsert -> inputPath/batch4
Validate with delete_input_data = true
Validates contents from batch1 to batch4 are in hudi and ensures Row equality
since "delete_input_data" is set to true, this node deletes contents from batch1 and batch4.
Round2:
insert => inputPath/batch5
upsert -> inputPath/batch6
Validate: validates contents from batch5 and batch6 are in hudi and ensures Row equality
insert => inputPath/batch7
upsert -> inputPath/batch8
Validate: validates contents from batch5 to batch8 are in hudi and ensures Row equality
since "delete_input_data" is set to true, this node deletes contents from batch5 to batch8.
Round3:
insert => inputPath/batch9
upsert -> inputPath/batch10
Validate: validates contents from batch9 and batch10 are in hudi and ensures Row equality
insert => inputPath/batch11
upsert -> inputPath/batch12
Validate with delete_input_data = true
Validates contents from batch9 to batch12 are in hudi and ensures Row equality
Set "delete_input_data" to true. so this node deletes contents from batch9 to batch12.
.
.
Above dag was just an example for illustration purposes. But you can make it complex as per your needs.
Insert
Upsert
Delete
Validate w/o deleting
Insert
Rollback
Validate w/o deleting
Upsert
Validate w/ deletion
Once you have copied the jar, test.properties and your dag to adhoc-2:/opt/, you can run the following command to execute the test suite job.
docker exec -it adhoc-2 /bin/bash
Sample COW command
spark-submit \
--conf spark.task.cpus=1 \
--conf spark.executor.cores=1 \
--conf spark.task.maxFailures=100 \
--conf spark.memory.fraction=0.4 \
--conf spark.rdd.compress=true \
--conf spark.kryoserializer.buffer.max=2000m \
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
--conf spark.kryo.registrator=org.apache.spark.HoodieSparkKryoRegistrar \
--conf spark.memory.storageFraction=0.1 \
--conf spark.shuffle.service.enabled=true \
--conf spark.sql.hive.convertMetastoreParquet=false \
--conf spark.driver.maxResultSize=12g \
--conf spark.executor.heartbeatInterval=120s \
--conf spark.network.timeout=600s \
--conf spark.yarn.max.executor.failures=10 \
--conf spark.sql.catalogImplementation=hive \
--conf spark.driver.extraClassPath=/var/demo/jars/* \
--conf spark.executor.extraClassPath=/var/demo/jars/* \
--class org.apache.hudi.integ.testsuite.HoodieTestSuiteJob \
/opt/hudi-integ-test-bundle-0.11.0-SNAPSHOT.jar \
--source-ordering-field test_suite_source_ordering_field \
--use-deltastreamer \
--target-base-path /user/hive/warehouse/hudi-integ-test-suite/output \
--input-base-path /user/hive/warehouse/hudi-integ-test-suite/input \
--target-table table1 \
--props test.properties \
--schemaprovider-class org.apache.hudi.integ.testsuite.schema.TestSuiteFileBasedSchemaProvider \
--source-class org.apache.hudi.utilities.sources.AvroDFSSource \
--input-file-size 125829120 \
--workload-yaml-path file:/opt/simple-deltastreamer.yaml \
--workload-generator-classname org.apache.hudi.integ.testsuite.dag.WorkflowDagGenerator \
--table-type COPY_ON_WRITE \
--compact-scheduling-minshare 1 \
--clean-input \
--clean-output
If you wish to enable metrics add below properties as well
--hoodie-conf hoodie.metrics.on=true \
--hoodie-conf hoodie.metrics.reporter.type=GRAPHITE \
--hoodie-conf hoodie.metrics.graphite.host=graphite \
--hoodie-conf hoodie.metrics.graphite.port=2003 \
Few ready to use dags are available under docker/demo/config/test-suite/ that could give you an idea for long running dags.
simple-deltastreamer.yaml: simple 1 round dag for COW table.
simple-deltastreamer.yaml: simple 1 round dag for MOR table.
cow-clustering-example.yaml : dag with 3 rounds, in which inline clustering will trigger during 2nd iteration.
cow-long-running-example.yaml : long running dag with 50 iterations. only 1 partition is used.
cow-long-running-multi-partitions.yaml: long running dag wit 50 iterations with multiple partitions.
To run test suite jobs for MOR table, pretty much any of these dags can be used as is. Only change is with the spark-shell command, you need to fix the table type.
--table-type MERGE_ON_READ
But if you had to switch from one table type to other, ensure you clean up all test paths explicitly before switching to a different table type.
hdfs dfs -rm -r /user/hive/warehouse/hudi-integ-test-suite/output/
hdfs dfs -rm -r /user/hive/warehouse/hudi-integ-test-suite/input/
As of now, "ValidateDatasetNode" uses spark data source and hive tables for comparison. Hence COW and real time view in MOR can be tested.
To run test suite jobs for validating all versions of schema, a DAG with insert, upsert nodes can be supplied with every version of schema to be evaluated, with "--saferSchemaEvolution" flag indicating the job is for schema validations. First run of the job will populate the dataset with data files with every version of schema and perform an upsert operation for verifying schema evolution.
Second and subsequent runs will verify that the data can be inserted with latest version of schema and perform an upsert operation to evolve all older version of schema (created by older run) to the latest version of schema.
Sample DAG:
rollback with num_rollbacks = 2
insert with schema_version = <version>
....
upsert with fraction_upsert_per_file = 0.5
Spark submit with the flag:
--saferSchemaEvolution
Integ test framework also supports multi-writer tests.
Props of interest Top level configs:
- --target-base-path refers to target hudi table base path
- --input-base-paths comma separated input paths. If you plan to spin up two writers, this should contain input dir for two.
- --props-paths comma separated property file paths. Again, if you plan to spin up two writers, this should contain the property file for each writer.
- --workload-yaml-paths comma separated workload yaml files for each writer.
Configs in property file:
- hoodie.deltastreamer.source.dfs.root : This property should refer to input dir for each writer in their corresponding property file. In other words, this should match w/ --input-base-paths.
- hoodie.deltastreamer.schemaprovider.target.schema.file : refers to target schema. If you are running in docker, do copy the source avsc file to docker as well.
- hoodie.deltastreamer.schemaprovider.source.schema.file : refer to source schema. Same as above (copy to docker if needed)
We have sample properties file to use based on whether InProcessLockProvider is used or ZookeeperBasedLockProvider is used.
multi-writer-local-1.properties multi-writer-local-2.properties multi-writer-local-3.properties multi-writer-local-4.properties
These have configs that uses InProcessLockProvider. Configs specific to InProcessLockProvider is: hoodie.write.lock.provider=org.apache.hudi.client.transaction.lock.InProcessLockProvider
multi-writer-1.properties multi-writer-2.properties
These have configs that uses ZookeeperBasedLockProvider. Setting up zookeeper is outside of the scope of this README. Ensure zookeeper is up before running these. Configs specific to ZookeeperBasedLockProvider:
hoodie.write.lock.provider=org.apache.hudi.client.transaction.lock.ZookeeperBasedLockProvider hoodie.write.lock.zookeeper.url=zookeeper:2181 hoodie.write.lock.zookeeper.port=2181 hoodie.write.lock.zookeeper.lock_key=locks hoodie.write.lock.zookeeper.base_path=/tmp/.locks
If you are running locally, ensure you update the schema file accordingly.
Sample spark-submit command to test one delta streamer and a spark data source writer.
./bin/spark-submit --packages org.apache.spark:spark-avro_2.11:2.4.0 \
--conf spark.task.cpus=3 --conf spark.executor.cores=3 \
--conf spark.task.maxFailures=100 --conf spark.memory.fraction=0.4 \
--conf spark.rdd.compress=true --conf spark.kryoserializer.buffer.max=2000m \
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
--conf spark.kryo.registrator=org.apache.spark.HoodieSparkKryoRegistrar \
--conf spark.memory.storageFraction=0.1 --conf spark.shuffle.service.enabled=true \
--conf spark.sql.hive.convertMetastoreParquet=false --conf spark.driver.maxResultSize=12g \
--conf spark.executor.heartbeatInterval=120s --conf spark.network.timeout=600s \
--conf spark.yarn.max.executor.failures=10 \
--conf spark.sql.catalogImplementation=hive \
--class org.apache.hudi.integ.testsuite.HoodieMultiWriterTestSuiteJob \
<HUDI_REPO_DIR>/packaging/hudi-integ-test-bundle/target/hudi-integ-test-bundle-0.12.0-SNAPSHOT.jar \
--source-ordering-field test_suite_source_ordering_field \
--use-deltastreamer \
--target-base-path /tmp/hudi/output \
--input-base-paths "/tmp/hudi/input1,/tmp/hudi/input2" \
--target-table table1 \
--props-paths "file:<HUDI_REPO_DIR>/docker/demo/config/test-suite/multi-writer-local-1.properties,file:<HUDI_REPO_DIR>/hudi/docker/demo/config/test-suite/multi-writer-local-2.properties" \
--schemaprovider-class org.apache.hudi.integ.testsuite.schema.TestSuiteFileBasedSchemaProvider \
--source-class org.apache.hudi.utilities.sources.AvroDFSSource \
--input-file-size 125829120 \
--workload-yaml-paths "file:<HUDI_REPO_DIR>/docker/demo/config/test-suite/multi-writer-1-ds.yaml,file:<HUDI_REPO_DIR>/docker/demo/config/test-suite/multi-writer-2-sds.yaml" \
--workload-generator-classname org.apache.hudi.integ.testsuite.dag.WorkflowDagGenerator \
--table-type COPY_ON_WRITE \
--compact-scheduling-minshare 1 \
--input-base-path "dummyValue" \
--workload-yaml-path "dummyValue" \
--props "dummyValue" \
--use-hudi-data-to-generate-updates
./bin/spark-submit --packages org.apache.spark:spark-avro_2.11:2.4.0 \
--conf spark.task.cpus=3 --conf spark.executor.cores=3 \
--conf spark.task.maxFailures=100 --conf spark.memory.fraction=0.4 \
--conf spark.rdd.compress=true --conf spark.kryoserializer.buffer.max=2000m \
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
--conf spark.kryo.registrator=org.apache.spark.HoodieSparkKryoRegistrar \
--conf spark.memory.storageFraction=0.1 --conf spark.shuffle.service.enabled=true \
--conf spark.sql.hive.convertMetastoreParquet=false --conf spark.driver.maxResultSize=12g \
--conf spark.executor.heartbeatInterval=120s --conf spark.network.timeout=600s \
--conf spark.yarn.max.executor.failures=10 --conf spark.sql.catalogImplementation=hive \
--class org.apache.hudi.integ.testsuite.HoodieMultiWriterTestSuiteJob \
<BUNDLE_LOCATION>/hudi-integ-test-bundle-0.12.0-SNAPSHOT.jar \
--source-ordering-field test_suite_source_ordering_field \
--use-deltastreamer \
--target-base-path /tmp/hudi/output \
--input-base-paths "/tmp/hudi/input1,/tmp/hudi/input2,/tmp/hudi/input3,/tmp/hudi/input4" \
--target-table table1 \
--props-paths "file:<PROPS_LOCATION>/multi-writer-local-1.properties,file:<PROPS_LOCATION>/multi-writer-local-2.properties,file:<PROPS_LOCATION>/multi-writer-local-3.properties,file:<PROPS_LOCATION>/multi-writer-local-4.properties"
--schemaprovider-class org.apache.hudi.integ.testsuite.schema.TestSuiteFileBasedSchemaProvider \
--source-class org.apache.hudi.utilities.sources.AvroDFSSource \
--input-file-size 125829120 \
--workload-yaml-paths "file:<PROPS_LOCATION>/multi-writer-1-sds.yaml,file:<PROPS_LOCATION>/multi-writer-2-sds.yaml,file:<PROPS_LOCATION>/multi-writer-3-sds.yaml,file:<PROPS_LOCATION>/multi-writer-4-sds.yaml" \
--workload-generator-classname org.apache.hudi.integ.testsuite.dag.WorkflowDagGenerator \
--table-type COPY_ON_WRITE \
--compact-scheduling-minshare 1 \
--input-base-path "dummyValue" \
--workload-yaml-path "dummyValue" \
--props "dummyValue" \
--use-hudi-data-to-generate-updates
Properties that differ from previous scenario and this one are: --input-base-paths refers to 4 paths instead of 2 --props-paths again, refers to 4 paths instead of 2. -- Each property file will contain properties for one spark datasource writer. --workload-yaml-paths refers to 4 paths instead of 2. -- Each yaml file used different range of partitions so that there won't be any conflicts while doing concurrent writes.
MOR Table: Running multi-writer tests for COW woks for entire iteration. but w/ MOR table, sometimes one of the writer could fail stating that there is already a scheduled delta commit. In general, while scheduling compaction, there should not be inflight delta commits. But w/ multiple threads trying to ingest in their own frequency, this is unavoidable. After few iterations, one of your thread could die because there is an inflight delta commit from another writer.
=======
We can test async table services with deltastreamer using below command. 3 additional arguments are required to test async table services compared to previous command.
--continuous \
--test-continuous-mode \
--min-sync-interval-seconds 20
Here is the full command:
./bin/spark-submit --packages org.apache.spark:spark-avro_2.11:2.4.4 \
--conf spark.task.cpus=1 --conf spark.executor.cores=1 \
--conf spark.task.maxFailures=100 \
--conf spark.memory.fraction=0.4 \
--conf spark.rdd.compress=true \
--conf spark.kryoserializer.buffer.max=2000m \
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer \
--conf spark.kryo.registrator=org.apache.spark.HoodieSparkKryoRegistrar \
--conf spark.memory.storageFraction=0.1 \
--conf spark.shuffle.service.enabled=true \
--conf spark.sql.hive.convertMetastoreParquet=false \
--conf spark.driver.maxResultSize=12g \
--conf spark.executor.heartbeatInterval=120s \
--conf spark.network.timeout=600s \
--conf spark.yarn.max.executor.failures=10 \
--conf spark.sql.catalogImplementation=hive \
--class org.apache.hudi.integ.testsuite.HoodieTestSuiteJob <PATH_TO_BUNDLE>/hudi-integ-test-bundle-0.12.0-SNAPSHOT.jar \
--source-ordering-field test_suite_source_ordering_field \
--use-deltastreamer \
--target-base-path /tmp/hudi/output \
--input-base-path /tmp/hudi/input \
--target-table table1 \
-props file:/tmp/test.properties \
--schemaprovider-class org.apache.hudi.integ.testsuite.schema.TestSuiteFileBasedSchemaProvider \
--source-class org.apache.hudi.utilities.sources.AvroDFSSource \
--input-file-size 125829120 \
--workload-yaml-path file:/tmp/simple-deltastreamer.yaml \
--workload-generator-classname org.apache.hudi.integ.testsuite.dag.WorkflowDagGenerator \
--table-type COPY_ON_WRITE \
--compact-scheduling-minshare 1 \
--clean-input \
--clean-output \
--continuous \
--test-continuous-mode \
--min-sync-interval-seconds 20
We can use any yaml and properties file w/ above spark-submit command to test deltastreamer w/ async table services.
Hudi provides a script to assist you in testing N no of yamls automatically. Checkout the script under hudi_root/docker folder. generate_test_suite.sh
Example command : // execute the command from within docker folder. ./generate_test_suite.sh --execute_test_suite false --include_medium_test_suite_yaml true --include_long_test_suite_yaml true
By default, generate_test_suite will run sanity test. In addition it supports 3 more yamls. medium_test_suite, long_test_suite and clustering_test_suite. Users can add the required yamls via command line as per their necessity.
Also, "--execute_test_suite" false will generate all required files and yamls in a local staging directory if users want to inspect them. To go ahead and execute the same, you can give "--execute_test_suite true". staging dir: docker/demo/config/test-suite/staging
Also, there are other additional configs which users can override depending on their needs. Some of the options are
--table_type COPY_ON_WRITE/MERGE_ON_READ // refers to table type.
--medium_num_iterations 20 // refers to total iterations medium test suite should run.
--long_num_iterations 100 // refers to total iterations long test suite should run.
--intermittent_delay_mins 1 // refers to delay between successive runs within a single test suite job.
--cluster_num_itr 30 // refers to total iterations for clustering test suite.
--cluster_delay_mins 2 // refers to delay between successive runs for clustering test suite job.
--cluster_exec_itr_count 15 // refers to the iteration at which clustering needs to be triggered.