forked from rapier1/hpn-ssh
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcipher-ctr-mt.c
677 lines (593 loc) · 19.7 KB
/
cipher-ctr-mt.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
/*
* OpenSSH Multi-threaded AES-CTR Cipher
*
* Author: Benjamin Bennett <[email protected]>
* Author: Mike Tasota <[email protected]>
* Author: Chris Rapier <[email protected]>
* Copyright (c) 2008-2021 Pittsburgh Supercomputing Center. All rights reserved.
*
* Based on original OpenSSH AES-CTR cipher. Small portions remain unchanged,
* Copyright (c) 2003 Markus Friedl <[email protected]>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "includes.h"
#if defined(WITH_OPENSSL) && !defined(WITH_OPENSSL3)
#include <sys/types.h>
#include <stdarg.h>
#include <string.h>
#include <openssl/evp.h>
#include "xmalloc.h"
#include "log.h"
#include <unistd.h>
#include "uthash.h"
/* compatibility with old or broken OpenSSL versions */
#include "openbsd-compat/openssl-compat.h"
#ifndef USE_BUILTIN_RIJNDAEL
#include <openssl/aes.h>
#endif
#include <pthread.h>
#ifdef __APPLE__
#include <sys/types.h>
#include <sys/sysctl.h>
#endif
/* note regarding threads and queues */
/* initially this cipher was written in a way that
* the key stream was generated in a per cipher block
* loop. For example, if the key stream queue length was
* 16k and the cipher block size was 16 bytes it would
* fill the queue 16 bytes at a time. Mitch Dorrell pointed
* out that we could fill the queue in once call eliminating
* loop and multiple calls to EVP_EncryptUpdate. Doing so
* dramatically reduced CPU load in the threads and indicated
* that we could also eliminate most of the threads and queues
* as it would take far less time for a queue to ebter KQ_FULL
* state. As such, we've reduced the default number of threads
* and queues from 2 and 8 (respectively) to 1 and 2. We've also
* elimnated the need to determine the physical number of cores on
* the system and, if the user desires, can spin up more threads
* using an environment variable. Additionally, queues is now fixed
* at thread_count + 1.
* cjr 10/19/2022 */
/*-------------------- TUNABLES --------------------*/
/* maximum number of threads and queues */
#define MAX_THREADS 4
#define MAX_NUMKQ (MAX_THREADS + 1)
/* Number of pregen threads to use */
/* this is a default value. The actual number is
* determined during init as a function of the number
* of available cores */
int cipher_threads = 1;
/* Number of keystream queues */
/* ideally this should be large enough so that there is
* always a key queue for a thread to work on
* so maybe double of the number of threads. Again this
* is a default and the actual value is determined in init*/
int numkq = 2;
/* Length of a keystream queue */
/* one queue holds 512KB (1024 * 32 * 16) of key data
* being that the queues are destroyed after a rekey
* and at leats one has to be fully filled prior to
* enciphering data we don't want this to be too large */
#define KQLEN (1024 * 32)
/* Processor cacheline length */
#define CACHELINE_LEN 64
/* Can the system do unaligned loads natively? */
#if defined(__aarch64__) || \
defined(__i386__) || \
defined(__powerpc__) || \
defined(__x86_64__)
# define CIPHER_UNALIGNED_OK
#endif
#if defined(__SIZEOF_INT128__)
# define CIPHER_INT128_OK
#endif
/*-------------------- END TUNABLES --------------------*/
#define HAVE_NONE 0
#define HAVE_KEY 1
#define HAVE_IV 2
int X = 0;
const EVP_CIPHER *evp_aes_ctr_mt(void);
/* Keystream Queue state */
enum {
KQINIT,
KQEMPTY,
KQFILLING,
KQFULL,
KQDRAINING
};
/* Keystream Queue struct */
struct kq {
u_char keys[KQLEN][AES_BLOCK_SIZE]; /* [32768][16B] */
u_char ctr[AES_BLOCK_SIZE]; /* 16B */
u_char pad0[CACHELINE_LEN];
pthread_mutex_t lock;
pthread_cond_t cond;
int qstate;
u_char pad1[CACHELINE_LEN];
};
/* Context struct */
struct ssh_aes_ctr_ctx_mt
{
long unsigned int struct_id;
int keylen;
int state;
int qidx;
int ridx;
int id[MAX_THREADS]; /* 32 */
AES_KEY aes_key;
const u_char *orig_key;
u_char aes_counter[AES_BLOCK_SIZE]; /* 16B */
pthread_t tid[MAX_THREADS]; /* 32 */
pthread_rwlock_t tid_lock;
struct kq q[MAX_NUMKQ]; /* 33 */
#ifdef __APPLE__
pthread_rwlock_t stop_lock;
int exit_flag;
#endif /* __APPLE__ */
};
/* this defines the hash and elements of evp context pointers
* that are created in thread_loop. We use this to clear and
* free the contexts in stop_and_prejoin
*/
struct aes_mt_ctx_ptrs {
pthread_t tid;
EVP_CIPHER_CTX *pointer; /* 32 */
UT_hash_handle hh;
};
/* globals */
/* how we increment the id the structs we create */
long unsigned int global_struct_id = 0;
/* keep a copy of the pointers created in thread_loop to free later */
struct aes_mt_ctx_ptrs *evp_ptrs = NULL;
/*
* Add num to counter 'ctr'
*/
static void
ssh_ctr_add(u_char *ctr, uint32_t num, u_int len)
{
int i;
uint16_t n;
for (n = 0, i = len - 1; i >= 0 && (num || n); i--) {
n = ctr[i] + (num & 0xff) + n;
num >>= 8;
ctr[i] = n & 0xff;
n >>= 8;
}
}
/*
* Threads may be cancelled in a pthread_cond_wait, we must free the mutex
*/
static void
thread_loop_cleanup(void *x)
{
pthread_mutex_unlock((pthread_mutex_t *)x);
}
#ifdef __APPLE__
/* Check if we should exit, we are doing both cancel and exit condition
* since on OSX threads seem to occasionally fail to notice when they have
* been cancelled. We want to have a backup to make sure that we won't hang
* when the main process join()-s the cancelled thread.
*/
static void
thread_loop_check_exit(struct ssh_aes_ctr_ctx_mt *c)
{
int exit_flag;
pthread_rwlock_rdlock(&c->stop_lock);
exit_flag = c->exit_flag;
pthread_rwlock_unlock(&c->stop_lock);
if (exit_flag)
pthread_exit(NULL);
}
#else
# define thread_loop_check_exit(s)
#endif /* __APPLE__ */
/*
* Helper function to terminate the helper threads
*/
static void
stop_and_join_pregen_threads(struct ssh_aes_ctr_ctx_mt *c)
{
int i;
#ifdef __APPLE__
/* notify threads that they should exit */
pthread_rwlock_wrlock(&c->stop_lock);
c->exit_flag = TRUE;
pthread_rwlock_unlock(&c->stop_lock);
#endif /* __APPLE__ */
/* Cancel pregen threads */
for (i = 0; i < cipher_threads; i++) {
debug ("Canceled %lu (%lu,%d)", c->tid[i], c->struct_id, c->id[i]);
pthread_cancel(c->tid[i]);
}
for (i = 0; i < numkq; i++) {
pthread_mutex_lock(&c->q[i].lock);
pthread_cond_broadcast(&c->q[i].cond);
pthread_mutex_unlock(&c->q[i].lock);
}
for (i = 0; i < cipher_threads; i++) {
if (pthread_kill(c->tid[i], 0) != 0)
debug3("AES-CTR MT pthread_join failure: Invalid thread id %lu in %s",
c->tid[i], __FUNCTION__);
else {
debug ("Joining %lu (%lu, %d)", c->tid[i], c->struct_id, c->id[i]);
pthread_mutex_destroy(&c->q[i].lock);
pthread_cond_destroy(&c->q[i].cond);
pthread_join(c->tid[i], NULL);
/* this finds the entry in the hash that corresponding to the
* thread id. That's used to find the pointer to the cipher struct
* created in thread_loop. */
struct aes_mt_ctx_ptrs *ptr;
HASH_FIND_INT(evp_ptrs, &c->tid[i], ptr);
EVP_CIPHER_CTX_free(ptr->pointer);
HASH_DEL(evp_ptrs, ptr);
free(ptr); }
}
pthread_rwlock_destroy(&c->tid_lock);
}
/*
* The life of a pregen thread:
* Find empty keystream queues and fill them using their counter.
* When done, update counter for the next fill.
*/
/* previously this used the low level interface which is, sadly,
* slower than the EVP interface by a long shot. The original ctx (from the
* body of the code) isn't passed in here but we have the key and the counter
* which means we should be able to create the exact same ctx and use that to
* fill the keystream queues. I'm concerned about additional overhead but the
* additional speed from AESNI should make up for it. */
/* The above comment was made when I thought I needed to do a new EVP init for
* each counter increment. Turns out not to be the case -cjr 10/15/21*/
static void *
thread_loop(void *x)
{
EVP_CIPHER_CTX *aesni_ctx;
struct ssh_aes_ctr_ctx_mt *c = x;
struct kq *q;
struct aes_mt_ctx_ptrs *ptr;
int qidx;
pthread_t first_tid;
int outlen;
u_char mynull[KQLEN * AES_BLOCK_SIZE];
memset(&mynull, 0, KQLEN * AES_BLOCK_SIZE);
/* get the thread id to see if this is the first one */
pthread_rwlock_rdlock(&c->tid_lock);
first_tid = c->tid[0];
pthread_rwlock_unlock(&c->tid_lock);
/* create the context for this thread */
aesni_ctx = EVP_CIPHER_CTX_new();
/* keep track of the pointer for the evp in this struct
* so we can free it later. So we place it in a hash indexed on the
* thread id, which is available to us in the free function.
* Note, the thread id isn't necessary unique across rekeys but
* that's okay as they are unique during a key. */
ptr = malloc(sizeof *ptr); /*freed in stop & prejoin */
ptr->tid = pthread_self(); /* index for hash */
ptr->pointer = aesni_ctx;
HASH_ADD_INT(evp_ptrs, tid, ptr);
/* initialize the cipher ctx with the key provided
* determine which cipher to use based on the key size */
if (c->keylen == 256)
EVP_EncryptInit_ex(aesni_ctx, EVP_aes_256_ctr(), NULL, c->orig_key, NULL);
else if (c->keylen == 128)
EVP_EncryptInit_ex(aesni_ctx, EVP_aes_128_ctr(), NULL, c->orig_key, NULL);
else if (c->keylen == 192)
EVP_EncryptInit_ex(aesni_ctx, EVP_aes_192_ctr(), NULL, c->orig_key, NULL);
else {
logit("Invalid key length of %d in AES CTR MT. Exiting", c->keylen);
exit(1);
}
/*
* Handle the special case of startup, one thread must fill
* the first KQ then mark it as draining. Lock held throughout.
*/
if (pthread_equal(pthread_self(), first_tid)) {
/* get the first element of the keyque struct */
q = &c->q[0];
pthread_mutex_lock(&q->lock);
/* if we are in the INIT state then fill the queue */
if (q->qstate == KQINIT) {
/* set the initial counter */
EVP_EncryptInit_ex(aesni_ctx, NULL, NULL, NULL, q->ctr);
/* encypher a block sized null string (mynull) with the key. This
* returns the keystream because xoring the keystream
* against null returns the keystream. Store that in the appropriate queue */
EVP_EncryptUpdate(aesni_ctx, q->keys[0], &outlen, mynull, KQLEN * AES_BLOCK_SIZE);
/* add the number of blocks creates to the aes counter */
ssh_ctr_add(q->ctr, KQLEN * numkq, AES_BLOCK_SIZE);
q->qstate = KQDRAINING;
pthread_cond_broadcast(&q->cond);
}
pthread_mutex_unlock(&q->lock);
}
/*
* Normal case is to find empty queues and fill them, skipping over
* queues already filled by other threads and stopping to wait for
* a draining queue to become empty.
*
* Multiple threads may be waiting on a draining queue and awoken
* when empty. The first thread to wake will mark it as filling,
* others will move on to fill, skip, or wait on the next queue.
*/
for (qidx = 1;; qidx = (qidx + 1) % numkq) {
/* Check if I was cancelled, also checked in cond_wait */
pthread_testcancel();
/* Check if we should exit as well */
thread_loop_check_exit(c);
/* Lock queue and block if its draining */
q = &c->q[qidx];
pthread_mutex_lock(&q->lock);
pthread_cleanup_push(thread_loop_cleanup, &q->lock);
while (q->qstate == KQDRAINING || q->qstate == KQINIT) {
thread_loop_check_exit(c);
pthread_cond_wait(&q->cond, &q->lock);
}
pthread_cleanup_pop(0);
/* If filling or full, somebody else got it, skip */
if (q->qstate != KQEMPTY) {
pthread_mutex_unlock(&q->lock);
continue;
}
/*
* Empty, let's fill it.
* Queue lock is relinquished while we do this so others
* can see that it's being filled.
*/
q->qstate = KQFILLING;
pthread_cond_broadcast(&q->cond);
pthread_mutex_unlock(&q->lock);
/* set the initial counter */
EVP_EncryptInit_ex(aesni_ctx, NULL, NULL, NULL, q->ctr);
/* see coresponding block above for useful comments */
EVP_EncryptUpdate(aesni_ctx, q->keys[0], &outlen, mynull, KQLEN * AES_BLOCK_SIZE);
/* Re-lock, mark full and signal consumer */
pthread_mutex_lock(&q->lock);
ssh_ctr_add(q->ctr, KQLEN * numkq, AES_BLOCK_SIZE);
q->qstate = KQFULL;
pthread_cond_broadcast(&q->cond);
pthread_mutex_unlock(&q->lock);
}
return NULL;
}
/* this is where the data is actually enciphered and deciphered */
/* this may also benefit from upgrading to the EVP API */
static int
ssh_aes_ctr(EVP_CIPHER_CTX *ctx, u_char *dest, const u_char *src,
size_t len)
{
typedef union {
#ifdef CIPHER_INT128_OK
__uint128_t *u128;
#endif
uint64_t *u64;
uint32_t *u32;
uint8_t *u8;
const uint8_t *cu8;
uintptr_t u;
} ptrs_t;
ptrs_t destp, srcp, bufp;
uintptr_t align;
struct ssh_aes_ctr_ctx_mt *c;
struct kq *q, *oldq;
int ridx;
u_char *buf;
if (len == 0)
return 1;
if ((c = EVP_CIPHER_CTX_get_app_data(ctx)) == NULL)
return 0;
q = &c->q[c->qidx];
ridx = c->ridx;
/* src already padded to block multiple */
srcp.cu8 = src;
destp.u8 = dest;
do { /* do until len is 0 */
buf = q->keys[ridx];
bufp.u8 = buf;
/* figure out the alignment on the fly */
#ifdef CIPHER_UNALIGNED_OK
align = 0;
#else
align = destp.u | srcp.u | bufp.u;
#endif
/* xor the src against the key (buf)
* different systems can do all 16 bytes at once or
* may need to do it in 8 or 4 bytes chunks
* worst case is doing it as a loop */
#ifdef CIPHER_INT128_OK
/* with GCC 13 we have having consistent seg faults
* in this section of code. Since this is a critical
* code path we are removing this until we have a solution
* in place -cjr 02/22/24
* TODO: FIX THIS
*/
/* if ((align & 0xf) == 0) { */
/* destp.u128[0] = srcp.u128[0] ^ bufp.u128[0]; */
/* } else */
#endif
/* 64 bits */
if ((align & 0x7) == 0) {
destp.u64[0] = srcp.u64[0] ^ bufp.u64[0];
destp.u64[1] = srcp.u64[1] ^ bufp.u64[1];
/* 32 bits */
} else if ((align & 0x3) == 0) {
destp.u32[0] = srcp.u32[0] ^ bufp.u32[0];
destp.u32[1] = srcp.u32[1] ^ bufp.u32[1];
destp.u32[2] = srcp.u32[2] ^ bufp.u32[2];
destp.u32[3] = srcp.u32[3] ^ bufp.u32[3];
} else {
/*1 byte at a time*/
size_t i;
for (i = 0; i < AES_BLOCK_SIZE; ++i)
dest[i] = src[i] ^ buf[i];
}
/* inc/decrement the pointers by the block size (16)*/
destp.u += AES_BLOCK_SIZE;
srcp.u += AES_BLOCK_SIZE;
/* Increment read index, switch queues on rollover */
if ((ridx = (ridx + 1) % KQLEN) == 0) {
oldq = q;
/* Mark next queue draining, may need to wait */
c->qidx = (c->qidx + 1) % numkq;
q = &c->q[c->qidx];
pthread_mutex_lock(&q->lock);
while (q->qstate != KQFULL) {
pthread_cond_wait(&q->cond, &q->lock);
}
q->qstate = KQDRAINING;
pthread_cond_broadcast(&q->cond);
pthread_mutex_unlock(&q->lock);
/* Mark consumed queue empty and signal producers */
pthread_mutex_lock(&oldq->lock);
oldq->qstate = KQEMPTY;
pthread_cond_broadcast(&oldq->cond);
pthread_mutex_unlock(&oldq->lock);
}
} while (len -= AES_BLOCK_SIZE);
c->ridx = ridx;
return 1;
}
static int
ssh_aes_ctr_init(EVP_CIPHER_CTX *ctx, const u_char *key, const u_char *iv,
int enc)
{
struct ssh_aes_ctr_ctx_mt *c;
int i;
char *aes_threads = getenv("SSH_CIPHER_THREADS");
if (aes_threads != NULL && strlen(aes_threads) != 0)
cipher_threads = atoi(aes_threads);
else
cipher_threads = 1;
if (cipher_threads < 1)
cipher_threads = 1;
if (cipher_threads > MAX_THREADS)
cipher_threads = MAX_THREADS;
numkq = cipher_threads + 1;
if (numkq > MAX_NUMKQ)
numkq = MAX_NUMKQ;
debug("Starting %d threads and %d queues\n", cipher_threads, numkq);
/* set up the initial state of c (our cipher stream struct) */
if ((c = EVP_CIPHER_CTX_get_app_data(ctx)) == NULL) {
c = xmalloc(sizeof(*c));
pthread_rwlock_init(&c->tid_lock, NULL);
#ifdef __APPLE__
pthread_rwlock_init(&c->stop_lock, NULL);
c->exit_flag = FALSE;
#endif /* __APPLE__ */
c->state = HAVE_NONE;
/* initialize the mutexs and conditions for each lock in our struct */
for (i = 0; i < numkq; i++) {
pthread_mutex_init(&c->q[i].lock, NULL);
pthread_cond_init(&c->q[i].cond, NULL);
}
/* attach our struct to the context */
EVP_CIPHER_CTX_set_app_data(ctx, c);
}
/* we are initializing but the current structure already
has an IV and key so we want to kill the existing key data
and start over. This is important when we need to rekey the data stream */
if (c->state == (HAVE_KEY | HAVE_IV)) {
/* tell the pregen threads to exit */
stop_and_join_pregen_threads(c);
#ifdef __APPLE__
/* reset the exit flag */
c->exit_flag = FALSE;
#endif /* __APPLE__ */
/* Start over getting key & iv */
c->state = HAVE_NONE;
}
/* set the initial key for this key stream queue */
if (key != NULL) {
AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8,
&c->aes_key);
c->orig_key = key;
c->keylen = EVP_CIPHER_CTX_key_length(ctx) * 8;
c->state |= HAVE_KEY;
}
/* set the IV */
if (iv != NULL) {
/* init the counter this is just a 16byte uchar */
memcpy(c->aes_counter, iv, AES_BLOCK_SIZE);
c->state |= HAVE_IV;
}
if (c->state == (HAVE_KEY | HAVE_IV)) {
/* Clear queues */
/* set the first key in the key queue to the current counter */
memcpy(c->q[0].ctr, c->aes_counter, AES_BLOCK_SIZE);
/* indicate that it needs to be initialized */
c->q[0].qstate = KQINIT;
/* for each of the remaining queues set the first counter to the
* counter and then add the size of the queue to the counter */
for (i = 1; i < numkq; i++) {
memcpy(c->q[i].ctr, c->aes_counter, AES_BLOCK_SIZE);
ssh_ctr_add(c->q[i].ctr, i * KQLEN, AES_BLOCK_SIZE);
c->q[i].qstate = KQEMPTY;
}
c->qidx = 0;
c->ridx = 0;
c->struct_id = global_struct_id++;
/* Start threads */
#define STACK_SIZE (1024 * 1024)
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setstacksize(&attr, STACK_SIZE);
for (i = 0; i < cipher_threads; i++) {
pthread_rwlock_wrlock(&c->tid_lock);
if (pthread_create(&c->tid[i], &attr, thread_loop, c) != 0)
fatal ("AES-CTR MT Could not create thread in %s", __FUNCTION__);
/*should die here */
else {
c->id[i] = i;
debug ("AES-CTR MT spawned a thread with id %lu in %s (%lu, %d)",
c->tid[i], __FUNCTION__, c->struct_id, c->id[i]);
}
pthread_rwlock_unlock(&c->tid_lock);
}
pthread_mutex_lock(&c->q[0].lock);
// wait for all of the threads to be initialized
while (c->q[0].qstate == KQINIT)
pthread_cond_wait(&c->q[0].cond, &c->q[0].lock);
pthread_mutex_unlock(&c->q[0].lock);
}
return 1;
}
static int
ssh_aes_ctr_cleanup(EVP_CIPHER_CTX *ctx)
{
struct ssh_aes_ctr_ctx_mt *c;
if ((c = EVP_CIPHER_CTX_get_app_data(ctx)) != NULL) {
stop_and_join_pregen_threads(c);
memset(c, 0, sizeof(*c));
free(c);
EVP_CIPHER_CTX_set_app_data(ctx, NULL);
}
return 1;
}
/* <friedl> */
const EVP_CIPHER *
evp_aes_ctr_mt(void)
{
static EVP_CIPHER *aes_ctr;
aes_ctr = EVP_CIPHER_meth_new(NID_undef, 16/*block*/, 16/*key*/);
EVP_CIPHER_meth_set_iv_length(aes_ctr, AES_BLOCK_SIZE);
EVP_CIPHER_meth_set_init(aes_ctr, ssh_aes_ctr_init);
EVP_CIPHER_meth_set_cleanup(aes_ctr, ssh_aes_ctr_cleanup);
EVP_CIPHER_meth_set_do_cipher(aes_ctr, ssh_aes_ctr);
# ifndef SSH_OLD_EVP
EVP_CIPHER_meth_set_flags(aes_ctr, EVP_CIPH_CBC_MODE
| EVP_CIPH_VARIABLE_LENGTH
| EVP_CIPH_ALWAYS_CALL_INIT
| EVP_CIPH_CUSTOM_IV);
# endif /*SSH_OLD_EVP*/
return aes_ctr;
}
#endif /* OSSL Check */