-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathbayesian_optimization.py
471 lines (392 loc) · 18.4 KB
/
bayesian_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
"""Main module.
Holds the `BayesianOptimization` class, which handles the maximization of a
function over a specific target space.
"""
from __future__ import annotations
import json
from collections import deque
from os import PathLike
from pathlib import Path
from typing import TYPE_CHECKING, Any
from warnings import warn
import numpy as np
from scipy.optimize import NonlinearConstraint
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import Matern
from bayes_opt import acquisition
from bayes_opt.constraint import ConstraintModel
from bayes_opt.domain_reduction import DomainTransformer
from bayes_opt.event import DEFAULT_EVENTS, Events
from bayes_opt.logger import _get_default_logger
from bayes_opt.parameter import wrap_kernel
from bayes_opt.target_space import TargetSpace
from bayes_opt.util import ensure_rng
if TYPE_CHECKING:
from collections.abc import Callable, Iterable, Mapping
from numpy.random import RandomState
from numpy.typing import NDArray
from bayes_opt.acquisition import AcquisitionFunction
from bayes_opt.constraint import ConstraintModel
from bayes_opt.domain_reduction import DomainTransformer
from bayes_opt.parameter import BoundsMapping, ParamsType
Float = np.floating[Any]
class Observable:
"""Inspired by https://www.protechtraining.com/blog/post/879#simple-observer."""
def __init__(self, events: Iterable[Any]) -> None:
# maps event names to subscribers
# str -> dict
self._events = {event: dict() for event in events}
def get_subscribers(self, event: Any) -> Any:
"""Return the subscribers of an event."""
return self._events[event]
def subscribe(self, event: Any, subscriber: Any, callback: Callable[..., Any] | None = None) -> None:
"""Add subscriber to an event."""
if callback is None:
callback = subscriber.update
self.get_subscribers(event)[subscriber] = callback
def unsubscribe(self, event: Any, subscriber: Any) -> None:
"""Remove a subscriber for a particular event."""
del self.get_subscribers(event)[subscriber]
def dispatch(self, event: Any) -> None:
"""Trigger callbacks for subscribers of an event."""
for callback in self.get_subscribers(event).values():
callback(event, self)
class BayesianOptimization(Observable):
"""Handle optimization of a target function over a specific target space.
This class takes the function to optimize as well as the parameters bounds
in order to find which values for the parameters yield the maximum value
using bayesian optimization.
Parameters
----------
f: function or None.
Function to be maximized.
pbounds: dict
Dictionary with parameters names as keys and a tuple with minimum
and maximum values.
constraint: NonlinearConstraint.
Note that the names of arguments of the constraint function and of
f need to be the same.
random_state: int or numpy.random.RandomState, optional(default=None)
If the value is an integer, it is used as the seed for creating a
numpy.random.RandomState. Otherwise the random state provided is used.
When set to None, an unseeded random state is generated.
verbose: int, optional(default=2)
The level of verbosity.
bounds_transformer: DomainTransformer, optional(default=None)
If provided, the transformation is applied to the bounds.
allow_duplicate_points: bool, optional (default=False)
If True, the optimizer will allow duplicate points to be registered.
This behavior may be desired in high noise situations where repeatedly probing
the same point will give different answers. In other situations, the acquisition
may occasionally generate a duplicate point.
"""
def __init__(
self,
f: Callable[..., float] | None,
pbounds: Mapping[str, tuple[float, float]],
acquisition_function: AcquisitionFunction | None = None,
constraint: NonlinearConstraint | None = None,
random_state: int | RandomState | None = None,
verbose: int = 2,
bounds_transformer: DomainTransformer | None = None,
allow_duplicate_points: bool = False,
):
self._random_state = ensure_rng(random_state)
self._allow_duplicate_points = allow_duplicate_points
self._queue: deque[ParamsType] = deque()
if acquisition_function is None:
if constraint is None:
self._acquisition_function = acquisition.UpperConfidenceBound(
kappa=2.576, random_state=self._random_state
)
else:
self._acquisition_function = acquisition.ExpectedImprovement(
xi=0.01, random_state=self._random_state
)
else:
self._acquisition_function = acquisition_function
if constraint is None:
# Data structure containing the function to be optimized, the
# bounds of its domain, and a record of the evaluations we have
# done so far
self._space = TargetSpace(
f, pbounds, random_state=random_state, allow_duplicate_points=self._allow_duplicate_points
)
self.is_constrained = False
else:
constraint_ = ConstraintModel(
constraint.fun, constraint.lb, constraint.ub, random_state=random_state
)
self._space = TargetSpace(
f,
pbounds,
constraint=constraint_,
random_state=random_state,
allow_duplicate_points=self._allow_duplicate_points,
)
self.is_constrained = True
# Internal GP regressor
self._gp = GaussianProcessRegressor(
kernel=wrap_kernel(Matern(nu=2.5), transform=self._space.kernel_transform),
alpha=1e-6,
normalize_y=True,
n_restarts_optimizer=5,
random_state=self._random_state,
)
self._verbose = verbose
self._bounds_transformer = bounds_transformer
if self._bounds_transformer:
if not isinstance(self._bounds_transformer, DomainTransformer):
msg = "The transformer must be an instance of DomainTransformer"
raise TypeError(msg)
self._bounds_transformer.initialize(self._space)
self._sorting_warning_already_shown = False # TODO: remove in future version
super().__init__(events=DEFAULT_EVENTS)
@property
def space(self) -> TargetSpace:
"""Return the target space associated with the optimizer."""
return self._space
@property
def acquisition_function(self) -> AcquisitionFunction:
"""Return the acquisition function associated with the optimizer."""
return self._acquisition_function
@property
def constraint(self) -> ConstraintModel | None:
"""Return the constraint associated with the optimizer, if any."""
if self.is_constrained:
return self._space.constraint
return None
@property
def max(self) -> dict[str, Any] | None:
"""Get maximum target value found and corresponding parameters.
See `TargetSpace.max` for more information.
"""
return self._space.max()
@property
def res(self) -> list[dict[str, Any]]:
"""Get all target values and constraint fulfillment for all parameters.
See `TargetSpace.res` for more information.
"""
return self._space.res()
def register(
self, params: ParamsType, target: float, constraint_value: float | NDArray[Float] | None = None
) -> None:
"""Register an observation with known target.
Parameters
----------
params: dict or list
The parameters associated with the observation.
target: float
Value of the target function at the observation.
constraint_value: float or None
Value of the constraint function at the observation, if any.
"""
# TODO: remove in future version
if isinstance(params, np.ndarray) and not self._sorting_warning_already_shown:
msg = (
"You're attempting to register an np.ndarray. In previous versions, the optimizer internally"
" sorted parameters by key and expected any registered array to respect this order."
" In the current and any future version the order as given by the pbounds dictionary will be"
" used. If you wish to retain sorted parameters, please manually sort your pbounds"
" dictionary before constructing the optimizer."
)
warn(msg, stacklevel=1)
self._sorting_warning_already_shown = True
self._space.register(params, target, constraint_value)
self.dispatch(Events.OPTIMIZATION_STEP)
def probe(self, params: ParamsType, lazy: bool = True) -> None:
"""Evaluate the function at the given points.
Useful to guide the optimizer.
Parameters
----------
params: dict or list
The parameters where the optimizer will evaluate the function.
lazy: bool, optional(default=True)
If True, the optimizer will evaluate the points when calling
maximize(). Otherwise it will evaluate it at the moment.
"""
# TODO: remove in future version
if isinstance(params, np.ndarray) and not self._sorting_warning_already_shown:
msg = (
"You're attempting to register an np.ndarray. In previous versions, the optimizer internally"
" sorted parameters by key and expected any registered array to respect this order."
" In the current and any future version the order as given by the pbounds dictionary will be"
" used. If you wish to retain sorted parameters, please manually sort your pbounds"
" dictionary before constructing the optimizer."
)
warn(msg, stacklevel=1)
self._sorting_warning_already_shown = True
params = self._space.array_to_params(params)
if lazy:
self._queue.append(params)
else:
self._space.probe(params)
self.dispatch(Events.OPTIMIZATION_STEP)
def suggest(self) -> dict[str, float | NDArray[Float]]:
"""Suggest a promising point to probe next."""
if len(self._space) == 0:
return self._space.array_to_params(self._space.random_sample(random_state=self._random_state))
# Finding argmax of the acquisition function.
suggestion = self._acquisition_function.suggest(gp=self._gp, target_space=self._space, fit_gp=True)
return self._space.array_to_params(suggestion)
def _prime_queue(self, init_points: int) -> None:
"""Ensure the queue is not empty.
Parameters
----------
init_points: int
Number of parameters to prime the queue with.
"""
if not self._queue and self._space.empty:
init_points = max(init_points, 1)
for _ in range(init_points):
sample = self._space.random_sample(random_state=self._random_state)
self._queue.append(self._space.array_to_params(sample))
def _prime_subscriptions(self) -> None:
if not any([len(subs) for subs in self._events.values()]):
_logger = _get_default_logger(self._verbose, self.is_constrained)
self.subscribe(Events.OPTIMIZATION_START, _logger)
self.subscribe(Events.OPTIMIZATION_STEP, _logger)
self.subscribe(Events.OPTIMIZATION_END, _logger)
def maximize(self, init_points: int = 5, n_iter: int = 25) -> None:
r"""
Maximize the given function over the target space.
Parameters
----------
init_points : int, optional(default=5)
Number of random points to probe before starting the optimization.
n_iter: int, optional(default=25)
Number of iterations where the method attempts to find the maximum
value.
Warning
-------
The maximize loop only fits the GP when suggesting a new point to
probe based on the acquisition function. This means that the GP may
not be fitted on all points registered to the target space when the
method completes. If you intend to use the GP model after the
optimization routine, make sure to fit it manually, e.g. by calling
``optimizer._gp.fit(optimizer.space.params, optimizer.space.target)``.
"""
self._prime_subscriptions()
self.dispatch(Events.OPTIMIZATION_START)
self._prime_queue(init_points)
iteration = 0
while self._queue or iteration < n_iter:
try:
x_probe = self._queue.popleft()
except IndexError:
x_probe = self.suggest()
iteration += 1
self.probe(x_probe, lazy=False)
if self._bounds_transformer and iteration > 0:
# The bounds transformer should only modify the bounds after
# the init_points points (only for the true iterations)
self.set_bounds(self._bounds_transformer.transform(self._space))
self.dispatch(Events.OPTIMIZATION_END)
def set_bounds(self, new_bounds: BoundsMapping) -> None:
"""Modify the bounds of the search space.
Parameters
----------
new_bounds : dict
A dictionary with the parameter name and its new bounds
"""
self._space.set_bounds(new_bounds)
def set_gp_params(self, **params: Any) -> None:
"""Set parameters of the internal Gaussian Process Regressor."""
if "kernel" in params:
params["kernel"] = wrap_kernel(kernel=params["kernel"], transform=self._space.kernel_transform)
self._gp.set_params(**params)
def save_state(self, path: str | PathLike[str]) -> None:
"""Save complete state for reconstruction of the optimizer.
Parameters
----------
path : str or PathLike
Path to save the optimization state
Raises
------
ValueError
If attempting to save state before collecting any samples.
"""
if len(self._space) == 0:
msg = (
"Cannot save optimizer state before collecting any samples. "
"Please probe or register at least one point before saving."
)
raise ValueError(msg)
random_state = None
if self._random_state is not None:
state_tuple = self._random_state.get_state()
random_state = {
"bit_generator": state_tuple[0],
"state": state_tuple[1].tolist(),
"pos": state_tuple[2],
"has_gauss": state_tuple[3],
"cached_gaussian": state_tuple[4],
}
# Get constraint values if they exist
constraint_values = self._space._constraint_values.tolist() if self.is_constrained else None
acquisition_params = self._acquisition_function.get_acquisition_params()
state = {
"pbounds": {key: self._space._bounds[i].tolist() for i, key in enumerate(self._space.keys)},
# Add current transformed bounds if using bounds transformer
"transformed_bounds": (self._space.bounds.tolist() if self._bounds_transformer else None),
"keys": self._space.keys,
"params": np.array(self._space.params).tolist(),
"target": self._space.target.tolist(),
"constraint_values": constraint_values,
"gp_params": {
"kernel": self._gp.kernel.get_params(),
"alpha": self._gp.alpha,
"normalize_y": self._gp.normalize_y,
"n_restarts_optimizer": self._gp.n_restarts_optimizer,
},
"allow_duplicate_points": self._allow_duplicate_points,
"verbose": self._verbose,
"random_state": random_state,
"acquisition_params": acquisition_params,
}
with Path(path).open("w") as f:
json.dump(state, f, indent=2)
def load_state(self, path: str | PathLike[str]) -> None:
"""Load optimizer state from a JSON file.
Parameters
----------
path : str or PathLike
Path to the JSON file containing the optimizer state.
"""
with Path(path).open("r") as file:
state = json.load(file)
params_array = np.asarray(state["params"], dtype=np.float64)
target_array = np.asarray(state["target"], dtype=np.float64)
constraint_array = (
np.array(state["constraint_values"]) if state["constraint_values"] is not None else None
)
for i in range(len(params_array)):
params = self._space.array_to_params(params_array[i])
target = target_array[i]
constraint = constraint_array[i] if constraint_array is not None else None
self.register(params=params, target=target, constraint_value=constraint)
self._acquisition_function.set_acquisition_params(state["acquisition_params"])
if state.get("transformed_bounds") and self._bounds_transformer:
new_bounds = {
key: bounds for key, bounds in zip(self._space.keys, np.array(state["transformed_bounds"]))
}
self._space.set_bounds(new_bounds)
self._bounds_transformer.initialize(self._space)
self._gp.set_params(**state["gp_params"])
if isinstance(self._gp.kernel, dict):
kernel_params = self._gp.kernel
self._gp.kernel = Matern(
length_scale=kernel_params["length_scale"],
length_scale_bounds=tuple(kernel_params["length_scale_bounds"]),
nu=kernel_params["nu"],
)
self._gp.fit(self._space.params, self._space.target)
if state["random_state"] is not None:
random_state_tuple = (
state["random_state"]["bit_generator"],
np.array(state["random_state"]["state"], dtype=np.uint32),
state["random_state"]["pos"],
state["random_state"]["has_gauss"],
state["random_state"]["cached_gaussian"],
)
self._random_state.set_state(random_state_tuple)