-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathdomain_reduction.py
295 lines (227 loc) · 11.3 KB
/
domain_reduction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
"""Implement domain transformation.
In particular, this provides a base transformer class and a sequential domain
reduction transformer as based on Stander and Craig's "On the robustness of a
simple domain reduction scheme for simulation-based optimization"
"""
from __future__ import annotations
from abc import ABC, abstractmethod
from collections.abc import Iterable, Mapping, Sequence
from typing import TYPE_CHECKING, Any
from warnings import warn
import numpy as np
from bayes_opt.parameter import FloatParameter
from bayes_opt.target_space import TargetSpace
if TYPE_CHECKING:
from numpy.typing import NDArray
Float = np.floating[Any]
class DomainTransformer(ABC):
"""Base class."""
@abstractmethod
def __init__(self, **kwargs: Any) -> None:
"""To override with specific implementation."""
@abstractmethod
def initialize(self, target_space: TargetSpace) -> None:
"""To override with specific implementation."""
@abstractmethod
def transform(self, target_space: TargetSpace) -> dict[str, NDArray[Float]]:
"""To override with specific implementation."""
class SequentialDomainReductionTransformer(DomainTransformer):
"""Reduce the searchable space.
A sequential domain reduction transformer based on the work by Stander, N. and Craig, K:
"On the robustness of a simple domain reduction scheme for simulation-based optimization"
Parameters
----------
gamma_osc : float, default=0.7
Parameter used to scale (typically dampen) oscillations.
gamma_pan : float, default=1.0
Parameter used to scale (typically unitary) panning.
eta : float, default=0.9
Zooming parameter used to shrink the region of interest.
minimum_window : float or np.ndarray or dict, default=0.0
Minimum window size for each parameter. If a float is provided,
the same value is used for all parameters.
"""
def __init__(
self,
parameters: Iterable[str] | None = None,
gamma_osc: float = 0.7,
gamma_pan: float = 1.0,
eta: float = 0.9,
minimum_window: NDArray[Float] | Sequence[float] | Mapping[str, float] | float = 0.0,
) -> None:
# TODO: Ensure that this is only applied to continuous parameters
self.parameters = parameters
self.gamma_osc = gamma_osc
self.gamma_pan = gamma_pan
self.eta = eta
self.minimum_window_value = minimum_window
def initialize(self, target_space: TargetSpace) -> None:
"""Initialize all of the parameters.
Parameters
----------
target_space : TargetSpace
TargetSpace this DomainTransformer operates on.
"""
if isinstance(self.minimum_window_value, Mapping):
self.minimum_window_value = [self.minimum_window_value[key] for key in target_space.keys]
else:
self.minimum_window_value = self.minimum_window_value
any_not_float = any([not isinstance(p, FloatParameter) for p in target_space._params_config.values()])
if any_not_float:
msg = "Domain reduction is only supported for all-FloatParameter optimization."
raise ValueError(msg)
# Set the original bounds
self.original_bounds = np.copy(target_space.bounds)
self.bounds = [self.original_bounds]
self.minimum_window: NDArray[Float] | Sequence[float]
# Set the minimum window to an array of length bounds
if isinstance(self.minimum_window_value, (Sequence, np.ndarray)):
if len(self.minimum_window_value) != len(target_space.bounds):
error_msg = "Length of minimum_window must be the same as the number of parameters"
raise ValueError(error_msg)
self.minimum_window = self.minimum_window_value
else:
self.minimum_window = [self.minimum_window_value] * len(target_space.bounds)
# Set initial values
self.previous_optimal = np.mean(target_space.bounds, axis=1)
self.current_optimal = np.mean(target_space.bounds, axis=1)
self.r = target_space.bounds[:, 1] - target_space.bounds[:, 0]
self.previous_d = 2.0 * (self.current_optimal - self.previous_optimal) / self.r
self.current_d = 2.0 * (self.current_optimal - self.previous_optimal) / self.r
self.c = self.current_d * self.previous_d
self.c_hat = np.sqrt(np.abs(self.c)) * np.sign(self.c)
self.gamma = 0.5 * (self.gamma_pan * (1.0 + self.c_hat) + self.gamma_osc * (1.0 - self.c_hat))
self.contraction_rate = self.eta + np.abs(self.current_d) * (self.gamma - self.eta)
self.r = self.contraction_rate * self.r
# check if the minimum window fits in the original bounds
self._window_bounds_compatibility(self.original_bounds)
def _update(self, target_space: TargetSpace) -> None:
"""Update contraction rate, window size, and window center.
Parameters
----------
target_space : TargetSpace
TargetSpace this DomainTransformer operates on.
"""
# setting the previous
self.previous_optimal = self.current_optimal
self.previous_d = self.current_d
self.current_optimal = target_space.params_to_array(target_space.max()["params"])
self.current_d = 2.0 * (self.current_optimal - self.previous_optimal) / self.r
self.c = self.current_d * self.previous_d
self.c_hat = np.sqrt(np.abs(self.c)) * np.sign(self.c)
self.gamma = 0.5 * (self.gamma_pan * (1.0 + self.c_hat) + self.gamma_osc * (1.0 - self.c_hat))
self.contraction_rate = self.eta + np.abs(self.current_d) * (self.gamma - self.eta)
self.r = self.contraction_rate * self.r
def _trim(self, new_bounds: NDArray[Float], global_bounds: NDArray[Float]) -> NDArray[Float]:
"""
Adjust the new_bounds and verify that they adhere to global_bounds and minimum_window.
Parameters
----------
new_bounds : np.ndarray
The proposed new_bounds that (may) need adjustment.
global_bounds : np.ndarray
The maximum allowable bounds for each parameter.
Returns
-------
new_bounds : np.ndarray
The adjusted bounds after enforcing constraints.
"""
# sort bounds
new_bounds = np.sort(new_bounds)
pbounds: NDArray[Float]
# Validate each parameter's bounds against the global_bounds
for i, pbounds in enumerate(new_bounds):
# If the one of the bounds is outside the global bounds, reset the bound to the global bound
# This is expected to happen when the window is near the global bounds, no warning is issued
if pbounds[0] < global_bounds[i, 0]:
pbounds[0] = global_bounds[i, 0]
if pbounds[1] > global_bounds[i, 1]:
pbounds[1] = global_bounds[i, 1]
# If a lower bound is greater than the associated global upper bound,
# reset it to the global lower bound
if pbounds[0] > global_bounds[i, 1]:
pbounds[0] = global_bounds[i, 0]
warn(
"\nDomain Reduction Warning:\n"
"A parameter's lower bound is greater than the global upper bound."
"The offensive boundary has been reset."
"Be cautious of subsequent reductions.",
stacklevel=2,
)
# If an upper bound is less than the associated global lower bound,
# reset it to the global upper bound
if pbounds[1] < global_bounds[i, 0]:
pbounds[1] = global_bounds[i, 1]
warn(
"\nDomain Reduction Warning:\n"
"A parameter's lower bound is greater than the global upper bound."
"The offensive boundary has been reset."
"Be cautious of subsequent reductions.",
stacklevel=2,
)
# Adjust new_bounds to ensure they respect the minimum window width for each parameter
for i, pbounds in enumerate(new_bounds):
current_window_width = abs(pbounds[0] - pbounds[1])
# If the window width is less than the minimum allowable width, adjust it
# Note that when minimum_window < width of the global bounds one side
# always has more space than required
if current_window_width < self.minimum_window[i]:
width_deficit = (self.minimum_window[i] - current_window_width) / 2.0
available_left_space = abs(global_bounds[i, 0] - pbounds[0])
available_right_space = abs(global_bounds[i, 1] - pbounds[1])
# determine how much to expand on the left and right
expand_left = min(width_deficit, available_left_space)
expand_right = min(width_deficit, available_right_space)
# calculate the deficit on each side
expand_left_deficit = width_deficit - expand_left
expand_right_deficit = width_deficit - expand_right
# shift the deficit to the side with more space
adjust_left = expand_left + max(expand_right_deficit, 0)
adjust_right = expand_right + max(expand_left_deficit, 0)
# adjust the bounds
pbounds[0] -= adjust_left
pbounds[1] += adjust_right
return new_bounds
def _window_bounds_compatibility(self, global_bounds: NDArray[Float]) -> None:
"""Check if global bounds are compatible with the minimum window sizes.
Parameters
----------
global_bounds : np.ndarray
The maximum allowable bounds for each parameter.
Raises
------
ValueError
If global bounds are not compatible with the minimum window size.
"""
entry: NDArray[Float]
for i, entry in enumerate(global_bounds):
global_window_width = abs(entry[1] - entry[0])
if global_window_width < self.minimum_window[i]:
error_msg = "Global bounds are not compatible with the minimum window size."
raise ValueError(error_msg)
def _create_bounds(self, parameters: Iterable[str], bounds: NDArray[Float]) -> dict[str, NDArray[Float]]:
"""Create a dictionary of bounds for each parameter.
Parameters
----------
parameters : Iterable[str]
The parameters for which to create the bounds.
bounds : np.ndarray
The bounds for each parameter.
"""
return {param: bounds[i, :] for i, param in enumerate(parameters)}
def transform(self, target_space: TargetSpace) -> dict[str, NDArray[Float]]:
"""Transform the bounds of the target space.
Parameters
----------
target_space : TargetSpace
TargetSpace this DomainTransformer operates on.
Returns
-------
dict
The new bounds of each parameter.
"""
self._update(target_space)
new_bounds = np.array([self.current_optimal - 0.5 * self.r, self.current_optimal + 0.5 * self.r]).T
new_bounds = self._trim(new_bounds, self.original_bounds)
self.bounds.append(new_bounds)
return self._create_bounds(target_space.keys, new_bounds)