-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathtarget_space.py
712 lines (586 loc) · 23.4 KB
/
target_space.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
"""Manages the optimization domain and holds points."""
from __future__ import annotations
from copy import deepcopy
from typing import TYPE_CHECKING, Any
from warnings import warn
import numpy as np
from colorama import Fore
from bayes_opt.exception import NotUniqueError
from bayes_opt.parameter import BayesParameter, CategoricalParameter, FloatParameter, IntParameter, is_numeric
from bayes_opt.util import ensure_rng
if TYPE_CHECKING:
from collections.abc import Callable, Mapping
from numpy.random import RandomState
from numpy.typing import NDArray
from bayes_opt.constraint import ConstraintModel
from bayes_opt.parameter import BoundsMapping, ParamsType
Float = np.floating[Any]
Int = np.integer[Any]
def _hashable(x: NDArray[Float]) -> tuple[float, ...]:
"""Ensure that a point is hashable by a python dict."""
return tuple(map(float, x))
class TargetSpace:
"""Holds the param-space coordinates (X) and target values (Y).
Allows for constant-time appends.
Parameters
----------
target_func : function or None.
Function to be maximized.
pbounds : dict
Dictionary with parameters names as keys and a tuple with minimum
and maximum values.
random_state : int, RandomState, or None
optionally specify a seed for a random number generator
allow_duplicate_points: bool, optional (default=False)
If True, the optimizer will allow duplicate points to be registered.
This behavior may be desired in high noise situations where repeatedly probing
the same point will give different answers. In other situations, the acquisition
may occasionally generate a duplicate point.
Examples
--------
>>> def target_func(p1, p2):
>>> return p1 + p2
>>> pbounds = {"p1": (0, 1), "p2": (1, 100)}
>>> space = TargetSpace(target_func, pbounds, random_state=0)
>>> x = np.array([4, 5])
>>> y = target_func(x)
>>> space.register(x, y)
>>> assert self.max()["target"] == 9
>>> assert self.max()["params"] == {"p1": 1.0, "p2": 2.0}
"""
def __init__(
self,
target_func: Callable[..., float] | None,
pbounds: BoundsMapping,
constraint: ConstraintModel | None = None,
random_state: int | RandomState | None = None,
allow_duplicate_points: bool | None = False,
) -> None:
self.random_state = ensure_rng(random_state)
self._allow_duplicate_points = allow_duplicate_points or False
self.n_duplicate_points = 0
# The function to be optimized
self.target_func = target_func
# Get the name of the parameters
self._keys: list[str] = list(pbounds.keys())
self._params_config = self.make_params(pbounds)
self._dim = sum([self._params_config[key].dim for key in self._keys])
self._masks = self.make_masks()
self._bounds = self.calculate_bounds()
# preallocated memory for X and Y points
self._params: NDArray[Float] = np.empty(shape=(0, self.dim))
self._target: NDArray[Float] = np.empty(shape=(0,))
# keep track of unique points we have seen so far
self._cache: dict[tuple[float, ...], float | tuple[float, float | NDArray[Float]]] = {}
self._constraint: ConstraintModel | None = constraint
if constraint is not None:
# preallocated memory for constraint fulfillment
self._constraint_values: NDArray[Float]
if constraint.lb.size == 1:
self._constraint_values = np.empty(shape=(0), dtype=float)
else:
self._constraint_values = np.empty(shape=(0, self._constraint.lb.size), dtype=float)
else:
self._constraint = None
def __contains__(self, x: NDArray[Float]) -> bool:
"""Check if this parameter has already been registered.
Returns
-------
bool
"""
return _hashable(x) in self._cache
def __len__(self) -> int:
"""Return number of observations registered.
Returns
-------
int
"""
return len(self._target)
@property
def empty(self) -> bool:
"""Check if anything has been registered.
Returns
-------
bool
"""
return len(self) == 0
@property
def params(self) -> NDArray[Float]:
"""Get the parameter values registered to this TargetSpace.
Returns
-------
np.ndarray
"""
return self._params
@property
def target(self) -> NDArray[Float]:
"""Get the target function values registered to this TargetSpace.
Returns
-------
np.ndarray
"""
return self._target
@property
def dim(self) -> int:
"""Get the number of parameter names.
Returns
-------
int
"""
return self._dim
@property
def keys(self) -> list[str]:
"""Get the keys (or parameter names).
Returns
-------
list of str
"""
return self._keys
@property
def params_config(self) -> dict[str, BayesParameter]:
"""Get the parameters configuration."""
return self._params_config
@property
def bounds(self) -> NDArray[Float]:
"""Get the bounds of this TargetSpace.
Returns
-------
np.ndarray
"""
return self._bounds
@property
def constraint(self) -> ConstraintModel | None:
"""Get the constraint model.
Returns
-------
ConstraintModel
"""
return self._constraint
@property
def masks(self) -> dict[str, NDArray[np.bool_]]:
"""Get the masks for the parameters.
Returns
-------
dict
"""
return self._masks
@property
def continuous_dimensions(self) -> NDArray[np.bool_]:
"""Get the continuous parameters.
Returns
-------
dict
"""
result = np.zeros(self.dim, dtype=bool)
masks = self.masks
for key in self.keys:
result[masks[key]] = self._params_config[key].is_continuous
return result
def make_params(self, pbounds: BoundsMapping) -> dict[str, BayesParameter]:
"""Create a dictionary of parameters from a dictionary of bounds.
Parameters
----------
pbounds : dict
A dictionary with the parameter names as keys and a tuple with minimum
and maximum values.
Returns
-------
dict
A dictionary with the parameter names as keys and the corresponding
parameter objects as values.
"""
any_is_not_float = False # TODO: remove in an upcoming release
params: dict[str, BayesParameter] = {}
for key in pbounds:
pbound = pbounds[key]
if isinstance(pbound, BayesParameter):
res = pbound
if not isinstance(pbound, FloatParameter):
any_is_not_float = True
elif (len(pbound) == 2 and is_numeric(pbound[0]) and is_numeric(pbound[1])) or (
len(pbound) == 3 and pbound[-1] is float
):
res = FloatParameter(name=key, bounds=(float(pbound[0]), float(pbound[1])))
elif len(pbound) == 3 and pbound[-1] is int:
res = IntParameter(name=key, bounds=(int(pbound[0]), int(pbound[1])))
any_is_not_float = True
else:
# assume categorical variable with pbound as list of possible values
res = CategoricalParameter(name=key, categories=pbound)
any_is_not_float = True
params[key] = res
if any_is_not_float:
msg = (
"Non-float parameters are experimental and may not work as expected."
" Exercise caution when using them and please report any issues you encounter."
)
warn(msg, stacklevel=4)
return params
def make_masks(self) -> dict[str, NDArray[np.bool_]]:
"""Create a dictionary of masks for the parameters.
The mask can be used to select the corresponding parameters from an array.
Returns
-------
dict
A dictionary with the parameter names as keys and the corresponding
mask as values.
"""
masks = {}
pos = 0
for key in self._keys:
mask = np.zeros(self._dim)
mask[pos : pos + self._params_config[key].dim] = 1
masks[key] = mask.astype(bool)
pos = pos + self._params_config[key].dim
return masks
def calculate_bounds(self) -> NDArray[Float]:
"""Calculate the float bounds of the parameter space."""
bounds = np.empty((self._dim, 2))
for key in self._keys:
bounds[self.masks[key]] = self._params_config[key].bounds
return bounds
def params_to_array(self, params: Mapping[str, float | NDArray[Float]]) -> NDArray[Float]:
"""Convert a dict representation of parameters into an array version.
Parameters
----------
params : dict
a single point, with len(x) == self.dim.
Returns
-------
np.ndarray
Representation of the parameters as an array.
"""
if set(params) != set(self.keys):
error_msg = (
f"Parameters' keys ({params}) do " f"not match the expected set of keys ({self.keys})."
)
raise ValueError(error_msg)
return self._to_float(params)
@property
def constraint_values(self) -> NDArray[Float]:
"""Get the constraint values registered to this TargetSpace.
Returns
-------
np.ndarray
"""
if self._constraint is None:
error_msg = "TargetSpace belongs to an unconstrained optimization"
raise AttributeError(error_msg)
return self._constraint_values
def kernel_transform(self, value: NDArray[Float]) -> NDArray[Float]:
"""Transform floating-point suggestions to values used in the kernel.
Vectorized.
"""
value = np.atleast_2d(value)
res = [self._params_config[p].kernel_transform(value[:, self.masks[p]]) for p in self._keys]
return np.hstack(res)
def array_to_params(self, x: NDArray[Float]) -> dict[str, float | NDArray[Float]]:
"""Convert an array representation of parameters into a dict version.
Parameters
----------
x : np.ndarray
a single point, with len(x) == self.dim.
Returns
-------
dict
Representation of the parameters as dictionary.
"""
if len(x) != self._dim:
error_msg = (
f"Size of array ({len(x)}) is different than the "
f"expected number of parameters ({self._dim})."
)
raise ValueError(error_msg)
return self._to_params(x)
def _to_float(self, value: Mapping[str, float | NDArray[Float]]) -> NDArray[Float]:
if set(value) != set(self.keys):
msg = f"Parameters' keys ({value}) do " f"not match the expected set of keys ({self.keys})."
raise ValueError(msg)
res = np.zeros(self._dim)
for key in self._keys:
p = self._params_config[key]
res[self.masks[key]] = p.to_float(value[key])
return res
def _to_params(self, value: NDArray[Float]) -> dict[str, float | NDArray[Float]]:
res: dict[str, float | NDArray[Float]] = {}
for key in self._keys:
p = self._params_config[key]
mask = self.masks[key]
res[key] = p.to_param(value[mask])
return res
@property
def mask(self) -> NDArray[np.bool_]:
"""Return a boolean array of valid points.
Points are valid if they satisfy both the constraint and boundary conditions.
Returns
-------
np.ndarray
"""
mask = np.ones_like(self.target, dtype=bool)
# mask points that don't satisfy the constraint
if self._constraint is not None:
mask &= self._constraint.allowed(self._constraint_values)
# mask points that are outside the bounds
if self._bounds is not None:
within_bounds = np.all(
(self._bounds[:, 0] <= self._params) & (self._params <= self._bounds[:, 1]), axis=1
)
mask &= within_bounds
return mask
def _as_array(self, x: Any) -> NDArray[Float]:
try:
x = np.asarray(x, dtype=float)
except TypeError:
x = self.params_to_array(x)
x = x.ravel()
if x.size != self.dim:
msg = f"Size of array ({len(x)}) is different than the expected number of ({self.dim})."
raise ValueError(msg)
return x
def register(
self, params: ParamsType, target: float, constraint_value: float | NDArray[Float] | None = None
) -> None:
"""Append a point and its target value to the known data.
Parameters
----------
params : np.ndarray
a single point, with len(x) == self.dim.
target : float
target function value
constraint_value : float or np.ndarray or None
Constraint function value
Raises
------
NotUniqueError:
if the point is not unique
Notes
-----
runs in amortized constant time
Examples
--------
>>> target_func = lambda p1, p2: p1 + p2
>>> pbounds = {"p1": (0, 1), "p2": (1, 100)}
>>> space = TargetSpace(target_func, pbounds)
>>> len(space)
0
>>> x = np.array([0, 0])
>>> y = 1
>>> space.register(x, y)
>>> len(space)
1
"""
x = self._as_array(params)
if x in self:
if self._allow_duplicate_points:
self.n_duplicate_points = self.n_duplicate_points + 1
print(
Fore.RED + f"Data point {x} is not unique. {self.n_duplicate_points}"
" duplicates registered. Continuing ..." + Fore.RESET
)
else:
error_msg = (
f"Data point {x} is not unique. You can set"
' "allow_duplicate_points=True" to avoid this error'
)
raise NotUniqueError(error_msg)
# if x is not within the bounds of the parameter space, warn the user
if self._bounds is not None and not np.all((self._bounds[:, 0] <= x) & (x <= self._bounds[:, 1])):
for key in self.keys:
if not np.all(
(self._params_config[key].bounds[..., 0] <= x[self.masks[key]])
& (x[self.masks[key]] <= self._params_config[key].bounds[..., 1])
):
msg = (
f"\nData point {x} is outside the bounds of the parameter {key}."
f"\n\tBounds:\n{self._params_config[key].bounds}"
)
warn(msg, stacklevel=2)
# Make copies of the data, so as not to modify the originals incase something fails
# during the registration process. This prevents out-of-sync data.
params_copy: NDArray[Float] = np.concatenate([self._params, x.reshape(1, -1)])
target_copy: NDArray[Float] = np.concatenate([self._target, [target]])
cache_copy = self._cache.copy() # shallow copy suffices
if self._constraint is None:
# Insert data into unique dictionary
cache_copy[_hashable(x.ravel())] = target
else:
if constraint_value is None:
msg = (
"When registering a point to a constrained TargetSpace"
" a constraint value needs to be present."
)
raise ValueError(msg)
# Insert data into unique dictionary
cache_copy[_hashable(x.ravel())] = (target, constraint_value)
constraint_values_copy: NDArray[Float] = np.concatenate(
[self._constraint_values, [constraint_value]]
)
self._constraint_values = constraint_values_copy
# Operations passed, update the variables
self._params = params_copy
self._target = target_copy
self._cache = cache_copy
def probe(self, params: ParamsType) -> float | tuple[float, float | NDArray[Float]]:
"""Evaluate the target function on a point and register the result.
Notes
-----
If `params` has been previously seen and duplicate points are not allowed,
returns a cached value of `result`.
Parameters
----------
params : np.ndarray
a single point, with len(x) == self.dim
Returns
-------
result : float | Tuple(float, float)
target function value, or Tuple(target function value, constraint value)
Example
-------
>>> target_func = lambda p1, p2: p1 + p2
>>> pbounds = {"p1": (0, 1), "p2": (1, 100)}
>>> space = TargetSpace(target_func, pbounds)
>>> space.probe([1, 5])
>>> assert self.max()["target"] == 6
>>> assert self.max()["params"] == {"p1": 1.0, "p2": 5.0}
"""
x = self._as_array(params)
if x in self and not self._allow_duplicate_points:
return self._cache[_hashable(x.ravel())]
dict_params = self.array_to_params(x)
if self.target_func is None:
error_msg = "No target function has been provided."
raise ValueError(error_msg)
target = self.target_func(**dict_params)
if self._constraint is None:
self.register(x, target)
return target
constraint_value = self._constraint.eval(**dict_params)
self.register(x, target, constraint_value)
return target, constraint_value
def random_sample(
self, n_samples: int = 0, random_state: np.random.RandomState | int | None = None
) -> NDArray[Float]:
"""
Sample a random point from within the bounds of the space.
Parameters
----------
n_samples : int, optional
Number of samples to draw. If 0, a single sample is drawn,
and a 1D array is returned. If n_samples > 0, an array of
shape (n_samples, dim) is returned.
random_state : np.random.RandomState | int | None
The random state to use for sampling.
Returns
-------
data: ndarray
[1 x dim] array with dimensions corresponding to `self._keys`
Examples
--------
>>> target_func = lambda p1, p2: p1 + p2
>>> pbounds = {"p1": (0, 1), "p2": (1, 100)}
>>> space = TargetSpace(target_func, pbounds, random_state=0)
>>> space.random_sample()
array([[ 0.54488318, 55.33253689]])
"""
random_state = ensure_rng(random_state)
flatten = n_samples == 0
n_samples = max(1, n_samples)
data = np.empty((n_samples, self._dim))
for key, mask in self.masks.items():
smpl = self._params_config[key].random_sample(n_samples, random_state)
data[:, mask] = smpl.reshape(n_samples, self._params_config[key].dim)
if flatten:
return data.ravel()
return data
def _target_max(self) -> float | None:
"""Get the maximum target value within the current parameter bounds.
If there is a constraint present, the maximum value that fulfills the
constraint within the parameter bounds is returned.
Returns
-------
max: float
The maximum target value.
"""
if len(self.target) == 0:
return None
if len(self.target[self.mask]) == 0:
return None
return self.target[self.mask].max()
def max(self) -> dict[str, Any] | None:
"""Get maximum target value found and corresponding parameters.
If there is a constraint present, the maximum value that fulfills the
constraint within the parameter bounds is returned.
Returns
-------
res: dict
A dictionary with the keys 'target' and 'params'. The value of
'target' is the maximum target value, and the value of 'params' is
a dictionary with the parameter names as keys and the parameter
values as values.
"""
target_max = self._target_max()
if target_max is None:
return None
target = self.target[self.mask]
params = self.params[self.mask]
target_max_idx = np.argmax(target)
res = {"target": target_max, "params": dict(zip(self.keys, params[target_max_idx]))}
if self._constraint is not None:
constraint_values = self.constraint_values[self.mask]
res["constraint"] = constraint_values[target_max_idx]
return res
def res(self) -> list[dict[str, Any]]:
"""Get all target values and constraint fulfillment for all parameters.
Returns
-------
res: list
A list of dictionaries with the keys 'target', 'params', and
'constraint'. The value of 'target' is the target value, the value
of 'params' is a dictionary with the parameter names as keys and the
parameter values as values, and the value of 'constraint' is the
constraint fulfillment.
Notes
-----
Does not report if points are within the bounds of the parameter space.
"""
if self._constraint is None:
params = [self.array_to_params(p) for p in self.params]
return [{"target": target, "params": param} for target, param in zip(self.target, params)]
params = [dict(zip(self.keys, p)) for p in self.params]
return [
{"target": target, "constraint": constraint_value, "params": param, "allowed": allowed}
for target, constraint_value, param, allowed in zip(
self.target,
self._constraint_values,
params,
self._constraint.allowed(self._constraint_values),
)
]
def set_bounds(self, new_bounds: BoundsMapping) -> None:
"""Change the lower and upper search bounds.
Parameters
----------
new_bounds : dict
A dictionary with the parameter name and its new bounds
"""
new_params_config = self.make_params(new_bounds)
dims = 0
params_config = deepcopy(self._params_config)
for key in self.keys:
if key in new_bounds:
if not isinstance(new_params_config[key], type(self._params_config[key])):
msg = (
f"Parameter type {type(new_params_config[key])} of"
" new bounds does not match parameter type"
f" {type(self._params_config[key])} of old bounds"
)
raise ValueError(msg)
params_config[key] = new_params_config[key]
dims = dims + params_config[key].dim
if dims != self.dim:
msg = (
f"Dimensions of new bounds ({dims}) does not match" f" dimensions of old bounds ({self.dim})."
)
raise ValueError(msg)
self._params_config = params_config
self._bounds = self.calculate_bounds()