-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvexHull.py
75 lines (58 loc) · 1.9 KB
/
convexHull.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# -*- coding: utf-8 -*-
import math
#获取基准点的下标
def get_leftbottompoint(p):
k = 0
for i in xrange(1, len(p)):
if p[i]['y'] < p[k]['y'] or (p[i]['y'] == p[k]['y'] and p[i]['x'] < p[k]['x']):
k = i
return k
#叉乘计算方法
def multiply(p1, p2, p0):
return (p1['x'] - p0['x']) * (p2['y'] - p0['y']) - (p2['x'] - p0['x']) * (p1['y'] - p0['y'])
#获取极角,通过求反正切得出,考虑pi / 2的情况
def get_arc(p1, p0):
# 兼容sort_points_tan的考虑
if (p1['x'] - p0['x']) == 0:
if ((p1['y'] - p0['y'])) == 0:
return -1;
else:
return math.pi / 2
tan = float((p1['y'] - p0['y'])) / float((p1['x'] - p0['x']))
arc = math.atan(tan)
if arc >= 0:
return arc
else:
return math.pi + arc
#对极角进行排序
def sort_points_tan(p, k):
p2 = []
for i in xrange(0, len(p)):
p2.append({"index": i, "arc": get_arc(p[i], p[k])})
p2.sort(key=lambda k: (k.get('arc', 0)))
p_out = []
for i in xrange(0, len(p2)):
p_out.append(p[p2[i]["index"]])
return p_out
def graham_scan(p):
k = get_leftbottompoint(p)
p_sort = sort_points_tan(p, k)
p_result = [None] * len(p_sort)
p_result[0] = p_sort[0]
p_result[1] = p_sort[1]
p_result[2] = p_sort[2]
top = 2
for i in xrange(3, len(p_sort)):
#叉乘为正则符合条件
while (top >= 1 and multiply(p_sort[i], p_result[top], p_result[top - 1]) > 0):
top -= 1
top += 1
p_result[top] = p_sort[i]
for i in xrange(len(p_result) - 1, -1, -1):
if p_result[i] == None:
p_result.pop()
return p_result
#测试
ps = [{"x": 2, "y": 2}, {"x": 1, "y": 1}, {"x": 2, "y": 1}, {"x": 1.5, "y": 1.5}, {"x": 1, "y": 2}, {"x": 3, "y": 1.5},
{"x": 1.5, "y": 1.2}, {"x": 0.5, "y": 2}, {"x": 1.5, "y": 0.5}]
print graham_scan(ps)