forked from sleuthkit/autopsy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgeo.py
390 lines (292 loc) · 12.9 KB
/
geo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# -*- coding: utf-8 -*-
# Copyright 2011 Tomo Krajina
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging as mod_logging
import math as mod_math
from . import utils as mod_utils
log = mod_logging.getLogger(__name__)
# Generic geo related function and class(es)
# latitude/longitude in GPX files is always in WGS84 datum
# WGS84 defined the Earth semi-major axis with 6378.137 km
EARTH_RADIUS = 6378.137 * 1000
# One degree in meters:
ONE_DEGREE = (2*mod_math.pi*EARTH_RADIUS) / 360 # ==> 111.319 km
def to_rad(x):
return x / 180. * mod_math.pi
def haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2):
"""
Haversine distance between two points, expressed in meters.
Implemented from http://www.movable-type.co.uk/scripts/latlong.html
"""
d_lat = to_rad(latitude_1 - latitude_2)
d_lon = to_rad(longitude_1 - longitude_2)
lat1 = to_rad(latitude_1)
lat2 = to_rad(latitude_2)
a = mod_math.sin(d_lat/2) * mod_math.sin(d_lat/2) + \
mod_math.sin(d_lon/2) * mod_math.sin(d_lon/2) * mod_math.cos(lat1) * mod_math.cos(lat2)
c = 2 * mod_math.atan2(mod_math.sqrt(a), mod_math.sqrt(1-a))
d = EARTH_RADIUS * c
return d
def length(locations=None, _3d=None):
locations = locations or []
if not locations:
return 0
length = 0
for i in range(len(locations)):
if i > 0:
previous_location = locations[i - 1]
location = locations[i]
if _3d:
d = location.distance_3d(previous_location)
else:
d = location.distance_2d(previous_location)
if d:
length += d
return length
def length_2d(locations=None):
""" 2-dimensional length (meters) of locations (only latitude and longitude, no elevation). """
locations = locations or []
return length(locations, False)
def length_3d(locations=None):
""" 3-dimensional length (meters) of locations (it uses latitude, longitude, and elevation). """
locations = locations or []
return length(locations, True)
def calculate_max_speed(speeds_and_distances):
"""
Compute average distance and standard deviation for distance. Extremes
in distances are usually extremes in speeds, so we will ignore them,
here.
speeds_and_distances must be a list containing pairs of (speed, distance)
for every point in a track segment.
"""
assert speeds_and_distances
if len(speeds_and_distances) > 0:
assert len(speeds_and_distances[0]) == 2
# ...
assert len(speeds_and_distances[-1]) == 2
size = len(speeds_and_distances)
if size < 20:
log.debug('Segment too small to compute speed, size=%s', size)
return None
distances = list(map(lambda x: x[1], speeds_and_distances))
average_distance = sum(distances) / float(size)
standard_distance_deviation = mod_math.sqrt(sum(map(lambda distance: (distance-average_distance)**2, distances))/float(size))
# Ignore items where the distance is too big:
filtered_speeds_and_distances = filter(lambda speed_and_distance: abs(speed_and_distance[1] - average_distance) <= standard_distance_deviation * 1.5, speeds_and_distances)
# sort by speed:
speeds = list(map(lambda speed_and_distance: speed_and_distance[0], filtered_speeds_and_distances))
if not isinstance(speeds, list): # python3
speeds = list(speeds)
if not speeds:
return None
speeds.sort()
# Even here there may be some extremes => ignore the last 5%:
index = int(len(speeds) * 0.95)
if index >= len(speeds):
index = -1
return speeds[index]
def calculate_uphill_downhill(elevations):
if not elevations:
return 0, 0
size = len(elevations)
def __filter(n):
current_ele = elevations[n]
if current_ele is None:
return False
if 0 < n < size - 1:
previous_ele = elevations[n-1]
next_ele = elevations[n+1]
if previous_ele is not None and current_ele is not None and next_ele is not None:
return previous_ele*.3 + current_ele*.4 + next_ele*.3
return current_ele
smoothed_elevations = list(map(__filter, range(size)))
uphill, downhill = 0., 0.
for n, elevation in enumerate(smoothed_elevations):
if n > 0 and elevation is not None and smoothed_elevations is not None:
d = elevation - smoothed_elevations[n-1]
if d > 0:
uphill += d
else:
downhill -= d
return uphill, downhill
def distance(latitude_1, longitude_1, elevation_1, latitude_2, longitude_2, elevation_2,
haversine=None):
"""
Distance between two points. If elevation is None compute a 2d distance
if haversine==True -- haversine will be used for every computations,
otherwise...
Haversine distance will be used for distant points where elevation makes a
small difference, so it is ignored. That's because haversine is 5-6 times
slower than the dummy distance algorithm (which is OK for most GPS tracks).
"""
# If points too distant -- compute haversine distance:
if haversine or (abs(latitude_1 - latitude_2) > .2 or abs(longitude_1 - longitude_2) > .2):
return haversine_distance(latitude_1, longitude_1, latitude_2, longitude_2)
coef = mod_math.cos(latitude_1 / 180. * mod_math.pi)
x = latitude_1 - latitude_2
y = (longitude_1 - longitude_2) * coef
distance_2d = mod_math.sqrt(x * x + y * y) * ONE_DEGREE
if elevation_1 is None or elevation_2 is None or elevation_1 == elevation_2:
return distance_2d
return mod_math.sqrt(distance_2d ** 2 + (elevation_1 - elevation_2) ** 2)
def elevation_angle(location1, location2, radians=False):
""" Uphill/downhill angle between two locations. """
if location1.elevation is None or location2.elevation is None:
return None
b = float(location2.elevation - location1.elevation)
a = location2.distance_2d(location1)
if a == 0:
return 0
angle = mod_math.atan(b / a)
if radians:
return angle
return 180 * angle / mod_math.pi
def distance_from_line(point, line_point_1, line_point_2):
""" Distance of point from a line given with two points. """
assert point, point
assert line_point_1, line_point_1
assert line_point_2, line_point_2
a = line_point_1.distance_2d(line_point_2)
if a == 0:
return line_point_1.distance_2d(point)
b = line_point_1.distance_2d(point)
c = line_point_2.distance_2d(point)
s = (a + b + c) / 2.
return 2. * mod_math.sqrt(abs(s * (s - a) * (s - b) * (s - c))) / a
def get_line_equation_coefficients(location1, location2):
"""
Get line equation coefficients for:
latitude * a + longitude * b + c = 0
This is a normal cartesian line (not spherical!)
"""
if location1.longitude == location2.longitude:
# Vertical line:
return float(0), float(1), float(-location1.longitude)
else:
a = float(location1.latitude - location2.latitude) / (location1.longitude - location2.longitude)
b = location1.latitude - location1.longitude * a
return float(1), float(-a), float(-b)
def simplify_polyline(points, max_distance):
"""Does Ramer-Douglas-Peucker algorithm for simplification of polyline """
if len(points) < 3:
return points
begin, end = points[0], points[-1]
# Use a "normal" line just to detect the most distant point (not its real distance)
# this is because this is faster to compute than calling distance_from_line() for
# every point.
#
# This is an approximation and may have some errors near the poles and if
# the points are too distant, but it should be good enough for most use
# cases...
a, b, c = get_line_equation_coefficients(begin, end)
# Initialize to safe values
tmp_max_distance = 0
tmp_max_distance_position = 1
# Check distance of all points between begin and end, exclusive
for point_no in range(1,len(points)-1):
point = points[point_no]
d = abs(a * point.latitude + b * point.longitude + c)
if d > tmp_max_distance:
tmp_max_distance = d
tmp_max_distance_position = point_no
# Now that we have the most distance point, compute its real distance:
real_max_distance = distance_from_line(points[tmp_max_distance_position], begin, end)
# If furthest point is less than max_distance, remove all points between begin and end
if real_max_distance < max_distance:
return [begin, end]
# If furthest point is more than max_distance, use it as anchor and run
# function again using (begin to anchor) and (anchor to end), remove extra anchor
return (simplify_polyline(points[:tmp_max_distance_position + 1], max_distance) +
simplify_polyline(points[tmp_max_distance_position:], max_distance)[1:])
class Location:
""" Generic geographical location """
latitude = None
longitude = None
elevation = None
def __init__(self, latitude, longitude, elevation=None):
self.latitude = latitude
self.longitude = longitude
self.elevation = elevation
def has_elevation(self):
return self.elevation or self.elevation == 0
def remove_elevation(self):
self.elevation = None
def distance_2d(self, location):
if not location:
return None
return distance(self.latitude, self.longitude, None, location.latitude, location.longitude, None)
def distance_3d(self, location):
if not location:
return None
return distance(self.latitude, self.longitude, self.elevation, location.latitude, location.longitude, location.elevation)
def elevation_angle(self, location, radians=False):
return elevation_angle(self, location, radians)
def move(self, location_delta):
self.latitude, self.longitude = location_delta.move(self)
def __add__(self, location_delta):
latitude, longitude = location_delta.move(self)
return Location(latitude, longitude)
def __str__(self):
return '[loc:%s,%s@%s]' % (self.latitude, self.longitude, self.elevation)
def __repr__(self):
if self.elevation is None:
return 'Location(%s, %s)' % (self.latitude, self.longitude)
else:
return 'Location(%s, %s, %s)' % (self.latitude, self.longitude, self.elevation)
def __hash__(self):
return mod_utils.hash_object(self, ('latitude', 'longitude', 'elevation'))
class LocationDelta:
"""
Intended to use similar to timestamp.timedelta, but for Locations.
"""
NORTH = 0
EAST = 90
SOUTH = 180
WEST = 270
def __init__(self, distance=None, angle=None, latitude_diff=None, longitude_diff=None):
"""
Version 1:
Distance (in meters).
angle_from_north *clockwise*.
...must be given
Version 2:
latitude_diff and longitude_diff
...must be given
"""
if (distance is not None) and (angle is not None):
if (latitude_diff is not None) or (longitude_diff is not None):
raise Exception('No lat/lon diff if using distance and angle!')
self.distance = distance
self.angle_from_north = angle
self.move_function = self.move_by_angle_and_distance
elif (latitude_diff is not None) and (longitude_diff is not None):
if (distance is not None) or (angle is not None):
raise Exception('No distance/angle if using lat/lon diff!')
self.latitude_diff = latitude_diff
self.longitude_diff = longitude_diff
self.move_function = self.move_by_lat_lon_diff
def move(self, location):
"""
Move location by this timedelta.
"""
return self.move_function(location)
def move_by_angle_and_distance(self, location):
coef = mod_math.cos(location.latitude / 180. * mod_math.pi)
vertical_distance_diff = mod_math.sin((90 - self.angle_from_north) / 180. * mod_math.pi) / ONE_DEGREE
horizontal_distance_diff = mod_math.cos((90 - self.angle_from_north) / 180. * mod_math.pi) / ONE_DEGREE
lat_diff = self.distance * vertical_distance_diff
lon_diff = self.distance * horizontal_distance_diff / coef
return location.latitude + lat_diff, location.longitude + lon_diff
def move_by_lat_lon_diff(self, location):
return location.latitude + self.latitude_diff, location.longitude + self.longitude_diff