forked from tlecomte/friture
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlog2_scale_engine.py
258 lines (194 loc) · 7.36 KB
/
log2_scale_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
# -*- coding: utf-8 -*-
# A scale engine for logarithmic (base 10) scales
#
# The step size is measured in *decades*
# and the major step size will be adjusted to fit the pattern
# \f$\left\{ 1,2,3,5\right\} \cdot 10^{n}\f$, where n is a natural number
# including zero.
#
# \warning the step size as well as the margins are measured in *decades*.
import numpy as np
from PyQt4.Qwt5 import QwtScaleEngine, QwtScaleTransformation, QwtDoubleInterval, QwtScaleDiv, QwtScaleArithmetic
# Extrema values for logarithmic scales
LOG_MIN = 1.0e-100
LOG_MAX = 1.0e100
class QwtLog10ScaleEngine(QwtScaleEngine):
def __init__(self, *args):
QwtScaleEngine.__init__(self, *args)
self.transf = QwtScaleTransformation(QwtScaleTransformation.Log10)
# Align and divide an interval
#\param maxNumSteps Max. number of steps
#\param x1 First limit of the interval (In/Out)
#\param x2 Second limit of the interval (In/Out)
#\param stepSize Step size (Out)
def autoScale(self, maxSteps, x1, x2):#, stepSize):
print("plouf autoScale")
if ( x1 > x2 ):
y = x2.copy()
x2 = x1
x1 = y
interval = QwtDoubleInterval(x1 / pow(10.0, lowerMargin()), x2 * pow(10.0, upperMargin()) )
logRef = 1.0
if reference() > LOG_MIN / 2:
logRef = min(reference(), LOG_MAX/2)
if testAttribute(QwtScaleEngine.Symmetric):
delta = max(interval.maxValue() / logRef, logRef / interval.minValue())
interval.setInterval(logRef / delta, logRef * delta)
if testAttribute(QwtScaleEngine.IncludeReference):
interval = interval.extend(logRef)
interval = interval.limited(LOG_MIN, LOG_MAX)
if interval.width() == 0.0:
interval = self.buildInterval(interval.minValue())
stepSize = self.divideInterval(self.log10(interval).width(), max(maxNumSteps, 1))
stepSize = max(stepSize, 1.0)
if not testAttribute(QwtScaleEngine.Floating):
interval = self.align(interval, stepSize)
x1 = interval.minValue()
x2 = interval.maxValue()
if testAttribute(QwtScaleEngine.Inverted):
y = x2.copy()
x2 = x1
x1 = y
stepSize = -stepSize
return (x1, x2, stepSize)
#Calculate a scale division
#\param x1 First interval limit
#\param x2 Second interval limit
#\param maxMajSteps Maximum for the number of major steps
#\param maxMinSteps Maximum number of minor steps
#\param stepSize Step size. If stepSize == 0, the scaleEngine calculates one.
def divideScale(self, x1, x2, maxMajSteps, maxMinSteps, stepSize = 0.0):
print("plouf divideScale", x1, x2, maxMajSteps, maxMinSteps, stepSize)
#return QwtScaleDiv(0.,1.,[1,2,3],[],[])
interval = QwtDoubleInterval(x1, x2).normalized().limited(LOG_MIN, LOG_MAX)
if interval.width() <= 0 :
return QwtScaleDiv()
if interval.maxValue() / interval.minValue() < 10.0:
# scale width is less than one decade -> build linear scale
linearScaler = QwtLinearScaleEngine()
linearScaler.setAttributes(self.attributes())
linearScaler.setReference(self.reference())
linearScaler.setMargins(self.lowerMargin(), self.upperMargin())
return linearScaler.divideScale(x1, x2, maxMajSteps, maxMinSteps, stepSize)
stepSize = abs(stepSize)
if stepSize == 0.:
maxMajSteps = max(maxMajSteps, 1)
stepSize = self.divideInterval(self.log10(interval).width(), maxMajSteps)
stepSize = max(stepSize, 1.) # major step must be >= 1 decade
scaleDiv = QwtScaleDiv()
if stepSize != 0.:
ticks = self.buildTicks(interval, stepSize, maxMinSteps)
scaleDiv = QwtScaleDiv(interval, ticks[QwtScaleDiv.MajorTick], ticks[QwtScaleDiv.MediumTick], ticks[QwtScaleDiv.MinorTick])
if x1 > x2:
scaleDiv.invert()
print(scaleDiv.ticks(QwtScaleDiv.MajorTick))
print(scaleDiv.ticks(QwtScaleDiv.MediumTick))
print(scaleDiv.ticks(QwtScaleDiv.MinorTick))
print("plouf finished divideScale")
return scaleDiv
# Return a transformation, for logarithmic (base 10) scales
def transformation(self):
import sip
sip.dump(self.transf)
print("plouf transformation")
return self.transf
# Return the interval [log10(interval.minValue(), log10(interval.maxValue]
def log10(self, interval):
return QwtDoubleInterval(np.log10(interval.minValue()), np.log10(interval.maxValue()))
# Return the interval [pow10(interval.minValue(), pow10(interval.maxValue]
def pow10(self, interval):
return QwtDoubleInterval(pow(10.0, interval.minValue()), pow(10.0, interval.maxValue()))
#Align an interval to a step size
#The limits of an interval are aligned that both are integer
#multiples of the step size.
def align(self, interval, stepSize):
print("plouf align")
intv = self.log10(interval)
x1 = QwtScaleArithmetic.floorEps(intv.minValue(), stepSize)
x2 = QwtScaleArithmetic.ceilEps(intv.maxValue(), stepSize)
return self.pow10(QwtDoubleInterval(x1, x2))
def buildTicks(self, interval, stepSize, maxMinSteps):
boundingInterval = self.align(interval, stepSize)
ticks = [[]]*QwtScaleDiv.NTickTypes
ticks[QwtScaleDiv.MajorTick] = self.buildMajorTicks(boundingInterval, stepSize)
if maxMinSteps > 0:
ticks[QwtScaleDiv.MinorTick] = self.buildMinorTicks(ticks[QwtScaleDiv.MajorTick], maxMinSteps, stepSize)
for i in range(0, QwtScaleDiv.NTickTypes):
ticks[i] = self.strip(ticks[i], interval)
print("buildTicks")
return ticks
# Remove ticks from a list, that are not inside an interval
def strip(self, ticks, interval):
print("strip")
if (not interval.isValid()) or (len(ticks) == 0) :
return []
if self.contains(interval, ticks[0]) and self.contains(interval, ticks[-1]):
return ticks
strippedTicks = []
for i in range(0, len(ticks)):
if self.contains(interval, ticks[i]):
strippedTicks += [ticks[i]]
return strippedTicks
def buildMinorTicks(self, majorTicks, maxMinSteps, stepSize):
if stepSize < 1.1: # major step width is one decade
if maxMinSteps < 1:
return QwtValueList()
if maxMinSteps >= 8:
k0 = 2
kmax = 9
kstep = 1
elif maxMinSteps >= 4:
k0 = 2
kmax = 8
kstep = 2
elif maxMinSteps >= 2:
k0 = 2
kmax = 5
kstep = 3
else:
k0 = 5
kmax = 5
kstep = 1
minorTicks = []
for i in range(0, len(majorTicks)):
v = majorTicks[i]
for k in range(k0, kmax, kstep):
minorTicks += [v * float(k)]
return minorTicks
else: # major step > one decade
minStep = self.divideInterval(stepSize, maxMinSteps)
if minStep == 0.:
return QwtValueList()
minStep = max(minStep, 1.)
# subticks per interval
nMin = round(stepSize / minStep) - 1
# Do the minor steps fit into the interval?
if QwtScaleArithmetic.compareEps((nMin + 1) * minStep, qwtAbs(stepSize), stepSize) > 0:
nMin = 0
if nMin < 1:
return QwtValueList() # no subticks
# substep factor = 10^substeps
minFactor = qwtMax(pow(10.0, minStep), 10.0)
minorTicks = []
for i in range(0, majorTicks.count()):
val = majorTicks[i]
for k in range(0, nMin):
val *= minFactor
minorTicks += [val]
return minorTicks
def buildMajorTicks(self, interval, stepSize):
width = self.log10(interval).width()
numTicks = int(round(width / stepSize) + 1)
numTicks = min(10000, numTicks)
lxmin = np.log(interval.minValue())
lxmax = np.log(interval.maxValue())
lstep = (lxmax - lxmin) / float(numTicks - 1.)
ticks = []
ticks += [interval.minValue()]
for i in range(1, numTicks):
ticks += [np.exp(lxmin + float(i) * lstep)]
ticks += [interval.maxValue()]
return ticks
def copy(self):
print("plouf copy")
return self