forked from swiftlang/swift
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathConstraintSystem.cpp
1636 lines (1394 loc) · 60.7 KB
/
ConstraintSystem.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//===--- ConstraintSystem.cpp - Constraint-based Type Checking ------------===//
//
// This source file is part of the Swift.org open source project
//
// Copyright (c) 2014 - 2016 Apple Inc. and the Swift project authors
// Licensed under Apache License v2.0 with Runtime Library Exception
//
// See https://swift.org/LICENSE.txt for license information
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
//
//===----------------------------------------------------------------------===//
//
// This file implements the constraint-based type checker, anchored by the
// \c ConstraintSystem class, which provides type checking and type
// inference for expressions.
//
//===----------------------------------------------------------------------===//
#include "ConstraintSystem.h"
#include "ConstraintGraph.h"
#include "swift/AST/GenericEnvironment.h"
#include "llvm/ADT/SmallString.h"
using namespace swift;
using namespace constraints;
ConstraintSystem::ConstraintSystem(TypeChecker &tc, DeclContext *dc,
ConstraintSystemOptions options)
: TC(tc), DC(dc), Options(options),
Arena(tc.Context, Allocator),
CG(*new ConstraintGraph(*this))
{
assert(DC && "context required");
}
ConstraintSystem::~ConstraintSystem() {
delete &CG;
}
bool ConstraintSystem::hasFreeTypeVariables() {
// Look for any free type variables.
for (auto tv : TypeVariables) {
if (!tv->getImpl().hasRepresentativeOrFixed()) {
return true;
}
}
return false;
}
void ConstraintSystem::addTypeVariable(TypeVariableType *typeVar) {
TypeVariables.push_back(typeVar);
// Notify the constraint graph.
(void)CG[typeVar];
}
void ConstraintSystem::mergeEquivalenceClasses(TypeVariableType *typeVar1,
TypeVariableType *typeVar2,
bool updateWorkList) {
assert(typeVar1 == getRepresentative(typeVar1) &&
"typeVar1 is not the representative");
assert(typeVar2 == getRepresentative(typeVar2) &&
"typeVar2 is not the representative");
assert(typeVar1 != typeVar2 && "cannot merge type with itself");
typeVar1->getImpl().mergeEquivalenceClasses(typeVar2, getSavedBindings());
// Merge nodes in the constraint graph.
CG.mergeNodes(typeVar1, typeVar2);
if (updateWorkList) {
addTypeVariableConstraintsToWorkList(typeVar1);
}
}
/// Determine whether the given type variables occurs in the given type.
bool ConstraintSystem::typeVarOccursInType(TypeVariableType *typeVar,
Type type,
bool *involvesOtherTypeVariables) {
SmallVector<TypeVariableType *, 4> typeVars;
type->getTypeVariables(typeVars);
bool result = false;
for (auto referencedTypeVar : typeVars) {
if (referencedTypeVar == typeVar) {
result = true;
if (!involvesOtherTypeVariables || *involvesOtherTypeVariables)
break;
continue;
}
if (involvesOtherTypeVariables)
*involvesOtherTypeVariables = true;
}
return result;
}
void ConstraintSystem::assignFixedType(TypeVariableType *typeVar, Type type,
bool updateState) {
typeVar->getImpl().assignFixedType(type, getSavedBindings());
if (!updateState)
return;
if (!type->isTypeVariableOrMember()) {
// If this type variable represents a literal, check whether we picked the
// default literal type. First, find the corresponding protocol.
ProtocolDecl *literalProtocol = nullptr;
// If we have the constraint graph, we can check all type variables in
// the equivalence class. This is the More Correct path.
// FIXME: Eliminate the less-correct path.
auto typeVarRep = getRepresentative(typeVar);
for (auto tv : CG[typeVarRep].getEquivalenceClass()) {
auto locator = tv->getImpl().getLocator();
if (!locator || !locator->getPath().empty())
continue;
auto anchor = locator->getAnchor();
if (!anchor)
continue;
literalProtocol = TC.getLiteralProtocol(anchor);
if (literalProtocol)
break;
}
// If the protocol has a default type, check it.
if (literalProtocol) {
if (auto defaultType = TC.getDefaultType(literalProtocol, DC)) {
// Check whether the nominal types match. This makes sure that we
// properly handle Array vs. Array<T>.
if (defaultType->getAnyNominal() != type->getAnyNominal())
increaseScore(SK_NonDefaultLiteral);
}
}
}
// Notify the constraint graph.
CG.bindTypeVariable(typeVar, type);
addTypeVariableConstraintsToWorkList(typeVar);
}
void ConstraintSystem::setMustBeMaterializableRecursive(Type type)
{
assert(type->isMaterializable() &&
"argument to setMustBeMaterializableRecursive may not be inherently "
"non-materializable");
type = getFixedTypeRecursive(type, /*wantRValue=*/false);
if (auto typeVar = type->getAs<TypeVariableType>()) {
typeVar->getImpl().setMustBeMaterializable(getSavedBindings());
} else if (auto *tupleTy = type->getAs<TupleType>()) {
for (auto elt : tupleTy->getElementTypes()) {
setMustBeMaterializableRecursive(elt);
}
}
}
void ConstraintSystem::addTypeVariableConstraintsToWorkList(
TypeVariableType *typeVar) {
// Gather the constraints affected by a change to this type variable.
SmallVector<Constraint *, 8> constraints;
CG.gatherConstraints(typeVar, constraints);
// Add any constraints that aren't already active to the worklist.
for (auto constraint : constraints) {
if (!constraint->isActive()) {
ActiveConstraints.splice(ActiveConstraints.end(),
InactiveConstraints, constraint);
constraint->setActive(true);
}
}
}
/// Retrieve a dynamic result signature for the given declaration.
static std::tuple<char, ObjCSelector, CanType>
getDynamicResultSignature(ValueDecl *decl) {
if (auto func = dyn_cast<AbstractFunctionDecl>(decl)) {
// Handle functions.
auto type =
decl->getInterfaceType()->castTo<AnyFunctionType>()->getResult();
return std::make_tuple(func->isStatic(), func->getObjCSelector(),
type->getCanonicalType());
}
if (auto asd = dyn_cast<AbstractStorageDecl>(decl)) {
// Handle properties and subscripts, anchored by the getter's selector.
return std::make_tuple(asd->isStatic(), asd->getObjCGetterSelector(),
asd->getInterfaceType()->getCanonicalType());
}
llvm_unreachable("Not a valid @objc member");
}
LookupResult &ConstraintSystem::lookupMember(Type base, DeclName name) {
base = base->getCanonicalType();
// Check whether we've already performed this lookup.
auto knownMember = MemberLookups.find({base, name});
if (knownMember != MemberLookups.end())
return *knownMember->second;
// Lookup the member.
NameLookupOptions lookupOptions = defaultMemberLookupOptions;
if (isa<AbstractFunctionDecl>(DC))
lookupOptions |= NameLookupFlags::KnownPrivate;
MemberLookups[{base, name}] = None;
auto lookup = TC.lookupMember(DC, base, name, lookupOptions);
auto &result = MemberLookups[{base, name}];
result = std::move(lookup);
// If we aren't performing dynamic lookup, we're done.
auto instanceTy = base->getRValueType();
if (auto metaTy = instanceTy->getAs<AnyMetatypeType>())
instanceTy = metaTy->getInstanceType();
auto protoTy = instanceTy->getAs<ProtocolType>();
if (!*result ||
!protoTy ||
!protoTy->getDecl()->isSpecificProtocol(
KnownProtocolKind::AnyObject))
return *result;
// We are performing dynamic lookup. Filter out redundant results early.
llvm::DenseSet<std::tuple<char, ObjCSelector, CanType>> known;
result->filter([&](ValueDecl *decl) -> bool {
if (decl->isInvalid())
return false;
return known.insert(getDynamicResultSignature(decl)).second;
});
return *result;
}
ArrayRef<Type> ConstraintSystem::
getAlternativeLiteralTypes(KnownProtocolKind kind) {
unsigned index;
switch (kind) {
#define PROTOCOL_WITH_NAME(Id, Name) \
case KnownProtocolKind::Id: llvm_unreachable("Not a literal protocol");
#define EXPRESSIBLE_BY_LITERAL_PROTOCOL_WITH_NAME(Id, Name)
#include "swift/AST/KnownProtocols.def"
case KnownProtocolKind::ExpressibleByArrayLiteral: index = 0; break;
case KnownProtocolKind::ExpressibleByDictionaryLiteral:index = 1; break;
case KnownProtocolKind::ExpressibleByExtendedGraphemeClusterLiteral: index = 2;
break;
case KnownProtocolKind::ExpressibleByFloatLiteral: index = 3; break;
case KnownProtocolKind::ExpressibleByIntegerLiteral: index = 4; break;
case KnownProtocolKind::ExpressibleByStringInterpolation: index = 5; break;
case KnownProtocolKind::ExpressibleByStringLiteral: index = 6; break;
case KnownProtocolKind::ExpressibleByNilLiteral: index = 7; break;
case KnownProtocolKind::ExpressibleByBooleanLiteral: index = 8; break;
case KnownProtocolKind::ExpressibleByUnicodeScalarLiteral: index = 9; break;
case KnownProtocolKind::ExpressibleByColorLiteral: index = 10; break;
case KnownProtocolKind::ExpressibleByImageLiteral: index = 11; break;
case KnownProtocolKind::ExpressibleByFileReferenceLiteral: index = 12; break;
}
static_assert(NumAlternativeLiteralTypes == 13, "Wrong # of literal types");
// If we already looked for alternative literal types, return those results.
if (AlternativeLiteralTypes[index])
return *AlternativeLiteralTypes[index];
SmallVector<Type, 4> types;
// Some literal kinds are related.
switch (kind) {
#define PROTOCOL_WITH_NAME(Id, Name) \
case KnownProtocolKind::Id: llvm_unreachable("Not a literal protocol");
#define EXPRESSIBLE_BY_LITERAL_PROTOCOL_WITH_NAME(Id, Name)
#include "swift/AST/KnownProtocols.def"
case KnownProtocolKind::ExpressibleByArrayLiteral:
case KnownProtocolKind::ExpressibleByDictionaryLiteral:
break;
case KnownProtocolKind::ExpressibleByExtendedGraphemeClusterLiteral:
case KnownProtocolKind::ExpressibleByStringInterpolation:
case KnownProtocolKind::ExpressibleByStringLiteral:
case KnownProtocolKind::ExpressibleByUnicodeScalarLiteral:
break;
case KnownProtocolKind::ExpressibleByIntegerLiteral:
// Integer literals can be treated as floating point literals.
if (auto floatProto = TC.Context.getProtocol(
KnownProtocolKind::ExpressibleByFloatLiteral)) {
if (auto defaultType = TC.getDefaultType(floatProto, DC)) {
types.push_back(defaultType);
}
}
break;
case KnownProtocolKind::ExpressibleByFloatLiteral:
break;
case KnownProtocolKind::ExpressibleByNilLiteral:
case KnownProtocolKind::ExpressibleByBooleanLiteral:
break;
case KnownProtocolKind::ExpressibleByColorLiteral:
case KnownProtocolKind::ExpressibleByImageLiteral:
case KnownProtocolKind::ExpressibleByFileReferenceLiteral:
break;
}
AlternativeLiteralTypes[index] = allocateCopy(types);
return *AlternativeLiteralTypes[index];
}
ConstraintLocator *ConstraintSystem::getConstraintLocator(
Expr *anchor,
ArrayRef<ConstraintLocator::PathElement> path,
unsigned summaryFlags) {
assert(summaryFlags == ConstraintLocator::getSummaryFlagsForPath(path));
// Check whether a locator with this anchor + path already exists.
llvm::FoldingSetNodeID id;
ConstraintLocator::Profile(id, anchor, path);
void *insertPos = nullptr;
auto locator = ConstraintLocators.FindNodeOrInsertPos(id, insertPos);
if (locator)
return locator;
// Allocate a new locator and add it to the set.
locator = ConstraintLocator::create(getAllocator(), anchor, path,
summaryFlags);
ConstraintLocators.InsertNode(locator, insertPos);
return locator;
}
ConstraintLocator *ConstraintSystem::getConstraintLocator(
const ConstraintLocatorBuilder &builder) {
// If the builder has an empty path, just extract its base locator.
if (builder.hasEmptyPath()) {
return builder.getBaseLocator();
}
// We have to build a new locator. Extract the paths from the builder.
SmallVector<LocatorPathElt, 4> path;
Expr *anchor = builder.getLocatorParts(path);
return getConstraintLocator(anchor, path, builder.getSummaryFlags());
}
namespace {
/// Function object that replaces all occurrences of archetypes and
/// dependent types with type variables.
class ReplaceDependentTypes {
ConstraintSystem &cs;
ConstraintLocatorBuilder &locator;
llvm::DenseMap<CanType, TypeVariableType *> &replacements;
llvm::DenseMap<CanType, Type> dependentMemberReplacements;
public:
ReplaceDependentTypes(
ConstraintSystem &cs,
ConstraintLocatorBuilder &locator,
llvm::DenseMap<CanType, TypeVariableType *> &replacements)
: cs(cs), locator(locator), replacements(replacements) { }
Type operator()(Type type) {
// Swift only supports rank-1 polymorphism.
assert(!type->is<GenericFunctionType>());
// Preserve parens when opening types.
if (isa<ParenType>(type.getPointer())) {
return type;
}
// Replace a generic type parameter with its corresponding type variable.
if (auto genericParam = type->getAs<GenericTypeParamType>()) {
auto known = replacements.find(genericParam->getCanonicalType());
if (known == replacements.end())
return cs.createTypeVariable(nullptr, TVO_PrefersSubtypeBinding);
return known->second;
}
// Replace a dependent member with a fresh type variable and make it a
// member of its base type.
if (auto dependentMember = type->getAs<DependentMemberType>()) {
// Check whether we've already dealt with this dependent member.
auto known = dependentMemberReplacements.find(
dependentMember->getCanonicalType());
if (known != dependentMemberReplacements.end())
return known->second;
// Replace archetypes in the base type.
// FIXME: Tracking the dependent members seems unnecessary.
if (auto base =
((*this)(dependentMember->getBase()))->getAs<TypeVariableType>()) {
auto result =
DependentMemberType::get(base, dependentMember->getAssocType());
dependentMemberReplacements[dependentMember->getCanonicalType()] =
result;
return result;
}
}
// Open up unbound generic types, turning them into bound generic
// types with type variables for each parameter.
if (auto unbound = type->getAs<UnboundGenericType>()) {
auto parentTy = unbound->getParent();
if (parentTy)
parentTy = parentTy.transform(*this);
auto unboundDecl = unbound->getDecl();
if (unboundDecl->isInvalid())
return ErrorType::get(cs.getASTContext());
// If the unbound decl hasn't been validated yet, we have a circular
// dependency that isn't being diagnosed properly.
if (!unboundDecl->getGenericSignature()) {
cs.TC.diagnose(unboundDecl, diag::circular_reference);
return ErrorType::get(type);
}
// Open up the generic type.
cs.openGeneric(unboundDecl->getInnermostDeclContext(),
unboundDecl->getDeclContext(),
unboundDecl->getInnermostGenericParamTypes(),
unboundDecl->getGenericRequirements(),
/*skipProtocolSelfConstraint=*/false,
locator,
replacements);
// Map the generic parameters to their corresponding type variables.
llvm::SmallVector<TypeLoc, 4> arguments;
for (auto gp : unboundDecl->getInnermostGenericParamTypes()) {
assert(replacements.count(gp->getCanonicalType()) &&
"Missing generic parameter?");
arguments.push_back(TypeLoc::withoutLoc(
replacements[gp->getCanonicalType()]));
}
// FIXME: For some reason we can end up with unbound->getDecl()
// pointing at a generic TypeAliasDecl here. If we find a way to
// handle generic TypeAliases elsewhere, this can just become a
// call to BoundGenericType::get().
return cs.TC.applyUnboundGenericArguments(unbound, unboundDecl,
SourceLoc(), cs.DC, arguments,
/*isGenericSignature*/false,
/*resolver*/nullptr);
}
return type;
}
};
}
Type ConstraintSystem::openType(
Type startingType,
ConstraintLocatorBuilder locator,
llvm::DenseMap<CanType, TypeVariableType *> &replacements) {
ReplaceDependentTypes replaceDependentTypes(*this, locator, replacements);
return startingType.transform(replaceDependentTypes);
}
/// Remove argument labels from the function type.
static Type removeArgumentLabels(Type type, unsigned numArgumentLabels) {
// If there is nothing to remove, don't.
if (numArgumentLabels == 0) return type;
auto fnType = type->getAs<FunctionType>();
// Drop argument labels from the input type.
Type inputType = fnType->getInput();
if (auto tupleTy = dyn_cast<TupleType>(inputType.getPointer())) {
SmallVector<TupleTypeElt, 4> elements;
elements.reserve(tupleTy->getNumElements());
for (const auto &elt : tupleTy->getElements()) {
elements.push_back(elt.getWithoutName());
}
inputType = TupleType::get(elements, type->getASTContext());
}
return FunctionType::get(inputType,
removeArgumentLabels(fnType->getResult(),
numArgumentLabels - 1),
fnType->getExtInfo());
}
Type ConstraintSystem::openFunctionType(
AnyFunctionType *funcType,
unsigned numArgumentLabelsToRemove,
ConstraintLocatorBuilder locator,
llvm::DenseMap<CanType, TypeVariableType *> &replacements,
DeclContext *innerDC,
DeclContext *outerDC,
bool skipProtocolSelfConstraint) {
Type type;
if (auto *genericFn = funcType->getAs<GenericFunctionType>()) {
// Open up the generic parameters and requirements.
openGeneric(innerDC,
outerDC,
genericFn->getGenericSignature(),
skipProtocolSelfConstraint,
locator,
replacements);
// Transform the input and output types.
Type inputTy = openType(genericFn->getInput(), locator, replacements);
if (!inputTy)
return Type();
Type resultTy = openType(genericFn->getResult(), locator, replacements);
if (!resultTy)
return Type();
// Build the resulting (non-generic) function type.
type = FunctionType::get(inputTy, resultTy,
FunctionType::ExtInfo().
withThrows(genericFn->throws()));
} else {
type = openType(funcType, locator, replacements);
if (!type) return Type();
}
return removeArgumentLabels(type, numArgumentLabelsToRemove);
}
bool ConstraintSystem::isArrayType(Type t) {
t = t->getDesugaredType();
// ArraySliceType<T> desugars to Array<T>.
if (isa<ArraySliceType>(t.getPointer()))
return true;
if (auto boundStruct = dyn_cast<BoundGenericStructType>(t.getPointer())) {
return boundStruct->getDecl() == TC.Context.getArrayDecl();
}
return false;
}
Optional<std::pair<Type, Type>> ConstraintSystem::isDictionaryType(Type type) {
if (auto boundStruct = type->getAs<BoundGenericStructType>()) {
if (boundStruct->getDecl() != TC.Context.getDictionaryDecl())
return None;
auto genericArgs = boundStruct->getGenericArgs();
return std::make_pair(genericArgs[0], genericArgs[1]);
}
return None;
}
bool ConstraintSystem::isSetType(Type type) {
if (auto boundStruct = type->getAs<BoundGenericStructType>()) {
return boundStruct->getDecl() == TC.Context.getSetDecl();
}
return false;
}
bool ConstraintSystem::isAnyHashableType(Type type) {
if (auto st = type->getAs<StructType>()) {
return st->getDecl() == TC.Context.getAnyHashableDecl();
}
return false;
}
Type ConstraintSystem::openBindingType(Type type,
ConstraintLocatorBuilder locator) {
Type result = openType(type, locator);
if (isArrayType(type)) {
auto boundStruct = type->getAs<BoundGenericStructType>();
if (auto replacement = getTypeChecker().getArraySliceType(
SourceLoc(), boundStruct->getGenericArgs()[0])) {
return replacement;
}
}
if (auto dict = isDictionaryType(type)) {
if (auto replacement = getTypeChecker().getDictionaryType(
SourceLoc(), dict->first, dict->second))
return replacement;
}
return result;
}
Type ConstraintSystem::getFixedTypeRecursive(Type type,
TypeMatchOptions &flags,
bool wantRValue,
bool retainParens) {
if (wantRValue)
type = type->getRValueType();
if (retainParens) {
if (auto parenTy = dyn_cast<ParenType>(type.getPointer())) {
type = getFixedTypeRecursive(parenTy->getUnderlyingType(), flags,
wantRValue, retainParens);
return ParenType::get(getASTContext(), type);
}
}
while (true) {
if (auto depMemType = type->getAs<DependentMemberType>()) {
if (!depMemType->getBase()->isTypeVariableOrMember()) return type;
// FIXME: Perform a more limited simplification?
Type newType = simplifyType(type);
if (newType.getPointer() == type.getPointer()) return type;
if (wantRValue)
newType = newType->getRValueType();
type = newType;
// Once we've simplified a dependent member type, we need to generate a
// new constraint.
flags |= TMF_GenerateConstraints;
continue;
}
if (auto typeVar = type->getAs<TypeVariableType>()) {
if (auto fixed = getFixedType(typeVar)) {
if (wantRValue)
fixed = fixed->getRValueType();
type = fixed;
continue;
}
break;
}
break;
}
return type;
}
void ConstraintSystem::recordOpenedTypes(
ConstraintLocatorBuilder locator,
const llvm::DenseMap<CanType, TypeVariableType *> &replacements) {
if (replacements.empty())
return;
// If the last path element is an archetype or associated type, ignore it.
SmallVector<LocatorPathElt, 2> pathElts;
Expr *anchor = locator.getLocatorParts(pathElts);
if (!pathElts.empty() &&
(pathElts.back().getKind() == ConstraintLocator::Archetype ||
pathElts.back().getKind() == ConstraintLocator::AssociatedType))
return;
// If the locator is empty, ignore it.
if (!anchor && pathElts.empty())
return;
ConstraintLocator *locatorPtr = getConstraintLocator(locator);
assert(locatorPtr && "No locator for opened types?");
assert(std::find_if(OpenedTypes.begin(), OpenedTypes.end(),
[&](const std::pair<ConstraintLocator *,
ArrayRef<OpenedType>> &entry) {
return entry.first == locatorPtr;
}) == OpenedTypes.end() &&
"already registered opened types for this locator");
OpenedType* openedTypes
= Allocator.Allocate<OpenedType>(replacements.size());
std::copy(replacements.begin(), replacements.end(), openedTypes);
OpenedTypes.push_back({ locatorPtr,
llvm::makeArrayRef(openedTypes,
replacements.size()) });
}
/// Determine how many levels of argument labels should be removed from the
/// function type when referencing the given declaration.
static unsigned getNumRemovedArgumentLabels(ASTContext &ctx, ValueDecl *decl,
bool isCurriedInstanceReference,
FunctionRefKind functionRefKind) {
// Only applicable to functions. Nothing else should have argument labels in
// the type.
auto func = dyn_cast<AbstractFunctionDecl>(decl);
if (!func) return 0;
switch (functionRefKind) {
case FunctionRefKind::Unapplied:
case FunctionRefKind::Compound:
// Always remove argument labels from unapplied references and references
// that use a compound name.
return func->getNumParameterLists();
case FunctionRefKind::SingleApply:
// If we have fewer than two parameter lists, leave the labels.
if (func->getNumParameterLists() < 2) return 0;
// If this is a curried reference to an instance method, where 'self' is
// being applied, e.g., "ClassName.instanceMethod(self)", remove the
// argument labels from the resulting function type. The 'self' parameter is
// always unlabeled, so this operation is a no-op for the actual application.
return isCurriedInstanceReference ? func->getNumParameterLists() : 1;
case FunctionRefKind::DoubleApply:
// Never remove argument labels from a double application.
return 0;
}
llvm_unreachable("Unhandled FunctionRefKind in switch.");
}
std::pair<Type, Type>
ConstraintSystem::getTypeOfReference(ValueDecl *value,
bool isTypeReference,
bool isSpecialized,
FunctionRefKind functionRefKind,
ConstraintLocatorBuilder locator,
const DeclRefExpr *base) {
llvm::DenseMap<CanType, TypeVariableType *> replacements;
if (value->getDeclContext()->isTypeContext() && isa<FuncDecl>(value)) {
// Unqualified lookup can find operator names within nominal types.
auto func = cast<FuncDecl>(value);
assert(func->isOperator() && "Lookup should only find operators");
auto openedType = openFunctionType(
func->getInterfaceType()->castTo<AnyFunctionType>(),
/*numRemovedArgumentLabels=*/0,
locator, replacements,
func->getInnermostDeclContext(),
func->getDeclContext(),
/*skipProtocolSelfConstraint=*/false);
auto openedFnType = openedType->castTo<FunctionType>();
// If this is a method whose result type is dynamic Self, replace
// DynamicSelf with the actual object type.
if (func->hasDynamicSelf()) {
Type selfTy = openedFnType->getInput()->getRValueInstanceType();
openedType = openedType->replaceCovariantResultType(
selfTy,
func->getNumParameterLists());
openedFnType = openedType->castTo<FunctionType>();
}
// If we opened up any type variables, record the replacements.
recordOpenedTypes(locator, replacements);
// The reference implicitly binds 'self'.
return { openedType, openedFnType->getResult() };
}
// If we have a type declaration, resolve it within the current context.
if (auto typeDecl = dyn_cast<TypeDecl>(value)) {
// Resolve the reference to this type declaration in our current context.
auto type = getTypeChecker().resolveTypeInContext(typeDecl, DC,
TR_InExpression,
isSpecialized);
if (!type)
return { nullptr, nullptr };
// Open the type.
type = openType(type, locator, replacements);
// If we opened up any type variables, record the replacements.
recordOpenedTypes(locator, replacements);
// If it's a type reference or it's a module type, we're done.
if (isTypeReference || type->is<ModuleType>())
return { type, type };
// If it's a value reference, refer to the metatype.
type = MetatypeType::get(type);
return { type, type };
}
// Determine the type of the value, opening up that type if necessary.
bool wantInterfaceType = true;
if (isa<VarDecl>(value))
wantInterfaceType = !value->getDeclContext()->isLocalContext();
Type valueType = TC.getUnopenedTypeOfReference(value, Type(), DC, base,
wantInterfaceType);
// If this is a let-param whose type is a type variable, this is an untyped
// closure param that may be bound to an inout type later. References to the
// param should have lvalue type instead. Express the relationship with a new
// constraint.
if (auto *param = dyn_cast<ParamDecl>(value)) {
if (param->isLet() && valueType->is<TypeVariableType>()) {
Type paramType = valueType;
valueType = createTypeVariable(getConstraintLocator(locator),
TVO_CanBindToLValue);
addConstraint(ConstraintKind::BindParam, paramType, valueType,
getConstraintLocator(locator));
}
}
// Adjust the type of the reference.
if (auto funcType = valueType->getAs<AnyFunctionType>()) {
valueType =
openFunctionType(
funcType,
getNumRemovedArgumentLabels(TC.Context, value,
/*isCurriedInstanceReference=*/false,
functionRefKind),
locator, replacements,
value->getInnermostDeclContext(),
value->getDeclContext(),
/*skipProtocolSelfConstraint=*/false);
} else {
valueType = openType(valueType, locator, replacements);
}
// If we opened up any type variables, record the replacements.
recordOpenedTypes(locator, replacements);
return { valueType, valueType };
}
void ConstraintSystem::openGeneric(
DeclContext *innerDC,
DeclContext *outerDC,
GenericSignature *signature,
bool skipProtocolSelfConstraint,
ConstraintLocatorBuilder locator,
llvm::DenseMap<CanType, TypeVariableType *> &replacements) {
openGeneric(innerDC,
outerDC,
signature->getGenericParams(),
signature->getRequirements(),
skipProtocolSelfConstraint,
locator,
replacements);
}
/// Bind type variables for archetypes that are determined from
/// context.
///
/// For example, if we are opening a generic function type
/// nested inside another function, we must bind the outer
/// generic parameters to context archetypes, because the
/// nested function can "capture" these outer generic parameters.
///
/// Another case where this comes up is if a generic type is
/// nested inside a function. We don't support codegen for this
/// yet, but again we need to bind any outer generic parameters
/// to context archetypes, because they're not free.
///
/// A final case we have to handle, even though it is invalid, is
/// when a type is nested inside another protocol. We bind the
/// protocol type variable for the protocol Self to its archetype
/// in protocol context. This of course makes no sense, but we
/// can't leave the type variable dangling, because then we crash
/// later.
///
/// If we ever do want to allow nominal types to be nested inside
/// protocols, the key is to set their declared type to a
/// NominalType whose parent is the 'Self' generic parameter, and
/// not the ProtocolType. Then, within a conforming type context,
/// we can 'reparent' the NominalType to that concrete type, and
/// resolve references to associated types inside that NominalType
/// relative to this concrete 'Self' type.
///
/// Also, of course IRGen would have to know to store the 'Self'
/// metadata as an extra hidden generic parameter in the metadata
/// of such a type, etc.
static void bindArchetypesFromContext(
ConstraintSystem &cs,
DeclContext *outerDC,
ConstraintLocator *locatorPtr,
const llvm::DenseMap<CanType, TypeVariableType *> &replacements) {
auto *genericEnv = outerDC->getGenericEnvironmentOfContext();
for (const auto *parentDC = outerDC;
!parentDC->isModuleScopeContext();
parentDC = parentDC->getParent()) {
if (parentDC->isTypeContext() &&
(parentDC == outerDC ||
!parentDC->getAsProtocolOrProtocolExtensionContext()))
continue;
auto *genericSig = parentDC->getGenericSignatureOfContext();
if (!genericSig)
break;
for (auto *paramTy : genericSig->getGenericParams()) {
auto found = replacements.find(paramTy->getCanonicalType());
// We might not have a type variable for this generic parameter
// because either we're opening up an UnboundGenericType,
// in which case we only want to infer the innermost generic
// parameters, or because this generic parameter was constrained
// away into a concrete type.
if (found != replacements.end()) {
auto typeVar = found->second;
auto contextTy = genericEnv->mapTypeIntoContext(paramTy);
cs.addConstraint(ConstraintKind::Bind, typeVar, contextTy,
locatorPtr);
}
}
break;
}
}
void ConstraintSystem::openGeneric(
DeclContext *innerDC,
DeclContext *outerDC,
ArrayRef<GenericTypeParamType *> params,
ArrayRef<Requirement> requirements,
bool skipProtocolSelfConstraint,
ConstraintLocatorBuilder locator,
llvm::DenseMap<CanType, TypeVariableType *> &replacements) {
auto locatorPtr = getConstraintLocator(locator);
auto *genericEnv = innerDC->getGenericEnvironmentOfContext();
// Create the type variables for the generic parameters.
for (auto gp : params) {
auto contextTy = genericEnv->mapTypeIntoContext(gp);
if (auto *archetype = contextTy->getAs<ArchetypeType>())
locatorPtr = getConstraintLocator(
locator.withPathElement(LocatorPathElt(archetype)));
auto typeVar = createTypeVariable(locatorPtr,
TVO_PrefersSubtypeBinding |
TVO_MustBeMaterializable);
replacements[gp->getCanonicalType()] = typeVar;
}
ReplaceDependentTypes replaceDependentTypes(*this, locator, replacements);
// Remember that any new constraints generated by opening this generic are
// due to the opening.
locatorPtr = getConstraintLocator(
locator.withPathElement(ConstraintLocator::OpenedGeneric));
bindArchetypesFromContext(*this, outerDC, locatorPtr, replacements);
// Add the requirements as constraints.
for (auto req : requirements) {
switch (req.getKind()) {
case RequirementKind::Conformance: {
auto subjectTy = req.getFirstType().transform(replaceDependentTypes);
auto proto = req.getSecondType()->castTo<ProtocolType>();
auto protoDecl = proto->getDecl();
// Determine whether this is the protocol 'Self' constraint we should
// skip.
if (skipProtocolSelfConstraint &&
protoDecl == outerDC &&
(protoDecl->getSelfInterfaceType()->getCanonicalType() ==
req.getFirstType()->getCanonicalType())) {
break;
}
addConstraint(ConstraintKind::ConformsTo, subjectTy, proto,
locatorPtr);
break;
}
case RequirementKind::Superclass: {
auto subjectTy = req.getFirstType().transform(replaceDependentTypes);
auto boundTy = req.getSecondType().transform(replaceDependentTypes);
addConstraint(ConstraintKind::Subtype, subjectTy, boundTy, locatorPtr);
break;
}
case RequirementKind::SameType: {
auto firstTy = req.getFirstType().transform(replaceDependentTypes);
auto secondTy = req.getSecondType().transform(replaceDependentTypes);
addConstraint(ConstraintKind::Bind, firstTy, secondTy, locatorPtr);
break;
}
}
}
}
/// Add the constraint on the type used for the 'Self' type for a member
/// reference.
///
/// \param cs The constraint system.
///
/// \param objectTy The type of the object that we're using to access the
/// member.
///
/// \param selfTy The instance type of the context in which the member is
/// declared.
static void addSelfConstraint(ConstraintSystem &cs, Type objectTy, Type selfTy,
ConstraintLocatorBuilder locator){
assert(!selfTy->is<ProtocolType>());
// Otherwise, use a subtype constraint for classes to cope with inheritance.
if (selfTy->getClassOrBoundGenericClass()) {
cs.addConstraint(ConstraintKind::Subtype, objectTy, selfTy,
cs.getConstraintLocator(locator));
return;
}
// Otherwise, the types must be equivalent.
cs.addConstraint(ConstraintKind::Equal, objectTy, selfTy,
cs.getConstraintLocator(locator));
}