forked from jax-ml/jax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn_test.py
372 lines (298 loc) · 12.9 KB
/
nn_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# Copyright 2019 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for nn module."""
import collections
from functools import partial
import itertools
import unittest
from absl.testing import absltest
from absl.testing import parameterized
import scipy.stats
from jax._src import core
from jax._src import test_util as jtu
from jax._src import ad_checkpoint
from jax.test_util import check_grads
from jax import nn
from jax import random
import jax
import jax.numpy as jnp
from jax import config
config.parse_flags_with_absl()
class NNFunctionsTest(jtu.JaxTestCase):
@jtu.skip_on_flag("jax_skip_slow_tests", True)
def testSoftplusGrad(self):
check_grads(nn.softplus, (1e-8,), order=4,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusGradZero(self):
check_grads(nn.softplus, (0.,), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusGradInf(self):
self.assertAllClose(
1., jax.grad(nn.softplus)(float('inf')))
def testSoftplusGradNegInf(self):
check_grads(nn.softplus, (-float('inf'),), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusGradNan(self):
check_grads(nn.softplus, (float('nan'),), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
@parameterized.parameters([int, float] + jtu.dtypes.floating + jtu.dtypes.integer)
def testSoftplusZero(self, dtype):
self.assertEqual(jnp.log(dtype(2)), nn.softplus(dtype(0)))
def testReluGrad(self):
rtol = 1e-2 if jtu.device_under_test() == "tpu" else None
check_grads(nn.relu, (1.,), order=3, rtol=rtol)
check_grads(nn.relu, (-1.,), order=3, rtol=rtol)
jaxpr = jax.make_jaxpr(jax.grad(nn.relu))(0.)
self.assertGreaterEqual(len(jaxpr.jaxpr.eqns), 2)
def testRelu6Grad(self):
rtol = 1e-2 if jtu.device_under_test() == "tpu" else None
check_grads(nn.relu6, (1.,), order=3, rtol=rtol)
check_grads(nn.relu6, (-1.,), order=3, rtol=rtol)
self.assertAllClose(jax.grad(nn.relu6)(0.), 0., check_dtypes=False)
self.assertAllClose(jax.grad(nn.relu6)(6.), 0., check_dtypes=False)
def testSoftplusValue(self):
val = nn.softplus(89.)
self.assertAllClose(val, 89., check_dtypes=False)
@jtu.skip_on_flag("jax_skip_slow_tests", True)
def testEluGrad(self):
check_grads(nn.elu, (1e4,), order=4, eps=1.)
def testEluValue(self):
val = nn.elu(1e4)
self.assertAllClose(val, 1e4, check_dtypes=False)
def testGluValue(self):
val = nn.glu(jnp.array([1.0, 0.0]), axis=0)
self.assertAllClose(val, jnp.array([0.5]))
@parameterized.parameters(False, True)
def testGeluIntType(self, approximate):
val_float = nn.gelu(jnp.array(-1.0), approximate=approximate)
val_int = nn.gelu(jnp.array(-1), approximate=approximate)
self.assertAllClose(val_float, val_int)
@parameterized.parameters(False, True)
def testGelu(self, approximate):
def gelu_reference(x):
return x * scipy.stats.norm.cdf(x)
rng = jtu.rand_default(self.rng())
args_maker = lambda: [rng((4, 5, 6), jnp.float32)]
self._CheckAgainstNumpy(
gelu_reference, partial(nn.gelu, approximate=approximate), args_maker,
check_dtypes=False, tol=1e-3 if approximate else None)
@parameterized.parameters(*itertools.product(
(jnp.float32, jnp.bfloat16, jnp.float16),
(partial(nn.gelu, approximate=False),
partial(nn.gelu, approximate=True),
nn.relu, nn.softplus, nn.sigmoid)))
def testDtypeMatchesInput(self, dtype, fn):
x = jnp.zeros((), dtype=dtype)
out = fn(x)
self.assertEqual(out.dtype, dtype)
def testEluMemory(self):
# see https://github.com/google/jax/pull/1640
with jax.enable_checks(False): # With checks we materialize the array
jax.make_jaxpr(lambda: nn.elu(jnp.ones((10 ** 12,)))) # don't oom
def testHardTanhMemory(self):
# see https://github.com/google/jax/pull/1640
with jax.enable_checks(False): # With checks we materialize the array
jax.make_jaxpr(lambda: nn.hard_tanh(jnp.ones((10 ** 12,)))) # don't oom
@parameterized.parameters([nn.softmax, nn.log_softmax])
def testSoftmaxWhereMask(self, fn):
x = jnp.array([5.5, 1.3, -4.2, 0.9])
m = jnp.array([True, False, True, True])
out = fn(x, where=m, initial=-jnp.inf)
self.assertAllClose(out[m], fn(x[m]))
probs = out if fn is nn.softmax else jnp.exp(out)
self.assertAllClose(probs.sum(), 1.0)
# TODO(mattjj): include log_softmax in these extra tests if/when we add a
# custom_jvp rule for it (since otherwise it doesn't pass the numerical
# checks below).
if fn is nn.softmax and config.jax_softmax_custom_jvp:
g_fun = lambda x: jnp.take(fn(x, where=m, initial=-jnp.inf),
jnp.array([0, 2, 3]))
jtu.check_grads(g_fun, (x,), order=2)
def testSoftmaxGrad(self):
x = jnp.array([5.5, 1.3, -4.2, 0.9])
jtu.check_grads(nn.softmax, (x,), order=2, atol=3e-3)
def testSoftmaxGradResiduals(self):
if not jax.config.jax_softmax_custom_jvp:
raise unittest.SkipTest("only applies when upgrade flag enabled")
x = jnp.array([5.5, 1.3, -4.2, 0.9])
res = ad_checkpoint.saved_residuals(nn.softmax, x)
self.assertLen(res, 1)
def testSoftmaxGradFlag(self):
x = jnp.array([5.5, 1.3, -4.2, 0.9])
with jax.softmax_custom_jvp(False):
res = ad_checkpoint.saved_residuals(nn.softmax, x)
self.assertLen(res, 3)
self.assertEqual(sum(a.size for a, _ in res), 6)
with jax.softmax_custom_jvp(True):
res = ad_checkpoint.saved_residuals(nn.softmax, x)
self.assertLen(res, 1)
self.assertEqual(sum(a.size for a, _ in res), 4)
def testStandardizeWhereMask(self):
x = jnp.array([5.5, 1.3, -4.2, 0.9])
m = jnp.array([True, False, True, True])
x_filtered = jnp.take(x, jnp.array([0, 2, 3]))
out_masked = jnp.take(nn.standardize(x, where=m), jnp.array([0, 2, 3]))
out_filtered = nn.standardize(x_filtered)
self.assertAllClose(out_masked, out_filtered)
def testOneHot(self):
actual = nn.one_hot(jnp.array([0, 1, 2]), 3)
expected = jnp.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
self.assertAllClose(actual, expected, check_dtypes=False)
actual = nn.one_hot(jnp.array([1, 2, 0]), 3)
expected = jnp.array([[0., 1., 0.],
[0., 0., 1.],
[1., 0., 0.]])
self.assertAllClose(actual, expected, check_dtypes=False)
def testOneHotOutOfBound(self):
actual = nn.one_hot(jnp.array([-1, 3]), 3)
expected = jnp.array([[0., 0., 0.],
[0., 0., 0.]])
self.assertAllClose(actual, expected, check_dtypes=False)
def testOneHotNonArrayInput(self):
actual = nn.one_hot([0, 1, 2], 3)
expected = jnp.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
self.assertAllClose(actual, expected, check_dtypes=False)
def testOneHotCustomDtype(self):
actual = nn.one_hot(jnp.array([0, 1, 2]), 3, dtype=jnp.bool_)
expected = jnp.array([[True, False, False],
[False, True, False],
[False, False, True]])
self.assertAllClose(actual, expected)
def testOneHotConcretizationError(self):
# https://github.com/google/jax/issues/3654
msg = r"in jax.nn.one_hot argument `num_classes`"
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
jax.jit(nn.one_hot)(3, 5)
def testOneHotAxis(self):
expected = jnp.array([[0., 1., 0.],
[0., 0., 1.],
[1., 0., 0.]]).T
actual = nn.one_hot(jnp.array([1, 2, 0]), 3, axis=0)
self.assertAllClose(actual, expected, check_dtypes=False)
actual = nn.one_hot(jnp.array([1, 2, 0]), 3, axis=-2)
self.assertAllClose(actual, expected, check_dtypes=False)
def testTanhExists(self):
nn.tanh # doesn't crash
def testCustomJVPLeak(self):
# https://github.com/google/jax/issues/8171
@jax.jit
def fwd():
a = jnp.array(1.)
def f(hx, _):
hx = jax.nn.sigmoid(hx + a)
return hx, None
hx = jnp.array(0.)
jax.lax.scan(f, hx, None, length=2)
with jax.checking_leaks():
fwd() # doesn't crash
def testCustomJVPLeak2(self):
# https://github.com/google/jax/issues/8171
# The above test uses jax.nn.sigmoid, as in the original #8171, but that
# function no longer actually has a custom_jvp! So we inline the old def.
@jax.custom_jvp
def sigmoid(x):
one = jnp.float32(1)
return jax.lax.div(one, jax.lax.add(one, jax.lax.exp(jax.lax.neg(x))))
sigmoid.defjvps(lambda g, ans, x: g * ans * (jnp.float32(1) - ans))
@jax.jit
def fwd():
a = jnp.array(1., 'float32')
def f(hx, _):
hx = sigmoid(hx + a)
return hx, None
hx = jnp.array(0., 'float32')
jax.lax.scan(f, hx, None, length=2)
with jax.checking_leaks():
fwd() # doesn't crash
InitializerRecord = collections.namedtuple(
"InitializerRecord",
["name", "initializer", "shapes", "dtypes"])
ALL_SHAPES = [(2,), (2, 2), (2, 3), (3, 2), (2, 3, 4), (4, 3, 2), (2, 3, 4, 5)]
def initializer_record(name, initializer, dtypes, min_dims=2, max_dims=4):
shapes = [shape for shape in ALL_SHAPES
if min_dims <= len(shape) <= max_dims]
return InitializerRecord(name, initializer, shapes, dtypes)
INITIALIZER_RECS = [
initializer_record("uniform", nn.initializers.uniform, jtu.dtypes.floating, 1),
initializer_record("normal", nn.initializers.normal, jtu.dtypes.inexact, 1),
initializer_record("he_normal", nn.initializers.he_normal, jtu.dtypes.inexact),
initializer_record("he_uniform", nn.initializers.he_uniform, jtu.dtypes.inexact),
initializer_record("glorot_normal", nn.initializers.glorot_normal, jtu.dtypes.inexact),
initializer_record("glorot_uniform", nn.initializers.glorot_uniform, jtu.dtypes.inexact),
initializer_record("lecun_normal", nn.initializers.lecun_normal, jtu.dtypes.inexact),
initializer_record("lecun_uniform", nn.initializers.lecun_uniform, jtu.dtypes.inexact),
initializer_record("orthogonal", nn.initializers.orthogonal, jtu.dtypes.floating, 2, 2),
initializer_record("delta_orthogonal", nn.initializers.delta_orthogonal, jtu.dtypes.floating, 4, 4)
]
class NNInitializersTest(jtu.JaxTestCase):
@parameterized.parameters(itertools.chain.from_iterable(
jtu.sample_product_testcases(
[dict(initializer=rec.initializer())],
shape=rec.shapes,
dtype=rec.dtypes
)
for rec in INITIALIZER_RECS
))
def testInitializer(self, initializer, shape, dtype):
rng = random.PRNGKey(0)
val = initializer(rng, shape, dtype)
self.assertEqual(shape, jnp.shape(val))
self.assertEqual(jax.dtypes.canonicalize_dtype(dtype), jnp.dtype(val))
@parameterized.parameters(itertools.chain.from_iterable(
jtu.sample_product_testcases(
[dict(initializer_provider=rec.initializer)],
shape=rec.shapes,
dtype=rec.dtypes
)
for rec in INITIALIZER_RECS
))
def testInitializerProvider(self, initializer_provider, shape, dtype):
rng = random.PRNGKey(0)
initializer = initializer_provider(dtype=dtype)
val = initializer(rng, shape)
self.assertEqual(shape, jnp.shape(val))
self.assertEqual(jax.dtypes.canonicalize_dtype(dtype), jnp.dtype(val))
def testVarianceScalingMultiAxis(self):
rng = random.PRNGKey(0)
shape = (2, 3, 4, 5)
initializer = nn.initializers.variance_scaling(
scale=1.0, mode='fan_avg', distribution='truncated_normal',
in_axis=(0, 1), out_axis=(-2, -1))
val = initializer(rng, shape)
self.assertEqual(shape, jnp.shape(val))
def testVarianceScalingBatchAxis(self):
rng = random.PRNGKey(0)
shape = (2, 3, 4, 5)
initializer = nn.initializers.variance_scaling(
scale=1.0, mode='fan_avg', distribution='truncated_normal',
in_axis=0, out_axis=(2, 3), batch_axis=1)
val = initializer(rng, shape)
self.assertEqual(shape, jnp.shape(val))
def testVarianceScalingError(self):
rng = random.PRNGKey(0)
shape = (5,)
initializer = nn.initializers.variance_scaling(
scale=1.0, mode='fan_avg', distribution='truncated_normal')
with self.assertRaisesRegex(
ValueError,
"Can't compute input and output sizes of a 1"
"-dimensional weights tensor. Must be at least 2D."
):
initializer(rng, shape)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())