forked from jonsmirl/mpc5200
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pktcdvd.c
2698 lines (2309 loc) · 65.4 KB
/
pktcdvd.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 2000 Jens Axboe <[email protected]>
* Copyright (C) 2001-2004 Peter Osterlund <[email protected]>
*
* May be copied or modified under the terms of the GNU General Public
* License. See linux/COPYING for more information.
*
* Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
* DVD-RAM devices.
*
* Theory of operation:
*
* At the lowest level, there is the standard driver for the CD/DVD device,
* typically ide-cd.c or sr.c. This driver can handle read and write requests,
* but it doesn't know anything about the special restrictions that apply to
* packet writing. One restriction is that write requests must be aligned to
* packet boundaries on the physical media, and the size of a write request
* must be equal to the packet size. Another restriction is that a
* GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
* command, if the previous command was a write.
*
* The purpose of the packet writing driver is to hide these restrictions from
* higher layers, such as file systems, and present a block device that can be
* randomly read and written using 2kB-sized blocks.
*
* The lowest layer in the packet writing driver is the packet I/O scheduler.
* Its data is defined by the struct packet_iosched and includes two bio
* queues with pending read and write requests. These queues are processed
* by the pkt_iosched_process_queue() function. The write requests in this
* queue are already properly aligned and sized. This layer is responsible for
* issuing the flush cache commands and scheduling the I/O in a good order.
*
* The next layer transforms unaligned write requests to aligned writes. This
* transformation requires reading missing pieces of data from the underlying
* block device, assembling the pieces to full packets and queuing them to the
* packet I/O scheduler.
*
* At the top layer there is a custom make_request_fn function that forwards
* read requests directly to the iosched queue and puts write requests in the
* unaligned write queue. A kernel thread performs the necessary read
* gathering to convert the unaligned writes to aligned writes and then feeds
* them to the packet I/O scheduler.
*
*************************************************************************/
#define VERSION_CODE "v0.2.0a 2004-07-14 Jens Axboe ([email protected]) and [email protected]"
#include <linux/pktcdvd.h>
#include <linux/config.h>
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/errno.h>
#include <linux/spinlock.h>
#include <linux/file.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/miscdevice.h>
#include <linux/suspend.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_ioctl.h>
#include <asm/uaccess.h>
#if PACKET_DEBUG
#define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
#else
#define DPRINTK(fmt, args...)
#endif
#if PACKET_DEBUG > 1
#define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
#else
#define VPRINTK(fmt, args...)
#endif
#define MAX_SPEED 0xffff
#define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
static struct proc_dir_entry *pkt_proc;
static int pkt_major;
static struct semaphore ctl_mutex; /* Serialize open/close/setup/teardown */
static mempool_t *psd_pool;
static void pkt_bio_finished(struct pktcdvd_device *pd)
{
BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
VPRINTK("pktcdvd: queue empty\n");
atomic_set(&pd->iosched.attention, 1);
wake_up(&pd->wqueue);
}
}
static void pkt_bio_destructor(struct bio *bio)
{
kfree(bio->bi_io_vec);
kfree(bio);
}
static struct bio *pkt_bio_alloc(int nr_iovecs)
{
struct bio_vec *bvl = NULL;
struct bio *bio;
bio = kmalloc(sizeof(struct bio), GFP_KERNEL);
if (!bio)
goto no_bio;
bio_init(bio);
bvl = kcalloc(nr_iovecs, sizeof(struct bio_vec), GFP_KERNEL);
if (!bvl)
goto no_bvl;
bio->bi_max_vecs = nr_iovecs;
bio->bi_io_vec = bvl;
bio->bi_destructor = pkt_bio_destructor;
return bio;
no_bvl:
kfree(bio);
no_bio:
return NULL;
}
/*
* Allocate a packet_data struct
*/
static struct packet_data *pkt_alloc_packet_data(void)
{
int i;
struct packet_data *pkt;
pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
if (!pkt)
goto no_pkt;
pkt->w_bio = pkt_bio_alloc(PACKET_MAX_SIZE);
if (!pkt->w_bio)
goto no_bio;
for (i = 0; i < PAGES_PER_PACKET; i++) {
pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
if (!pkt->pages[i])
goto no_page;
}
spin_lock_init(&pkt->lock);
for (i = 0; i < PACKET_MAX_SIZE; i++) {
struct bio *bio = pkt_bio_alloc(1);
if (!bio)
goto no_rd_bio;
pkt->r_bios[i] = bio;
}
return pkt;
no_rd_bio:
for (i = 0; i < PACKET_MAX_SIZE; i++) {
struct bio *bio = pkt->r_bios[i];
if (bio)
bio_put(bio);
}
no_page:
for (i = 0; i < PAGES_PER_PACKET; i++)
if (pkt->pages[i])
__free_page(pkt->pages[i]);
bio_put(pkt->w_bio);
no_bio:
kfree(pkt);
no_pkt:
return NULL;
}
/*
* Free a packet_data struct
*/
static void pkt_free_packet_data(struct packet_data *pkt)
{
int i;
for (i = 0; i < PACKET_MAX_SIZE; i++) {
struct bio *bio = pkt->r_bios[i];
if (bio)
bio_put(bio);
}
for (i = 0; i < PAGES_PER_PACKET; i++)
__free_page(pkt->pages[i]);
bio_put(pkt->w_bio);
kfree(pkt);
}
static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
{
struct packet_data *pkt, *next;
BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
pkt_free_packet_data(pkt);
}
}
static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
{
struct packet_data *pkt;
INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
spin_lock_init(&pd->cdrw.active_list_lock);
while (nr_packets > 0) {
pkt = pkt_alloc_packet_data();
if (!pkt) {
pkt_shrink_pktlist(pd);
return 0;
}
pkt->id = nr_packets;
pkt->pd = pd;
list_add(&pkt->list, &pd->cdrw.pkt_free_list);
nr_packets--;
}
return 1;
}
static void *pkt_rb_alloc(gfp_t gfp_mask, void *data)
{
return kmalloc(sizeof(struct pkt_rb_node), gfp_mask);
}
static void pkt_rb_free(void *ptr, void *data)
{
kfree(ptr);
}
static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
{
struct rb_node *n = rb_next(&node->rb_node);
if (!n)
return NULL;
return rb_entry(n, struct pkt_rb_node, rb_node);
}
static inline void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
{
rb_erase(&node->rb_node, &pd->bio_queue);
mempool_free(node, pd->rb_pool);
pd->bio_queue_size--;
BUG_ON(pd->bio_queue_size < 0);
}
/*
* Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
*/
static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
{
struct rb_node *n = pd->bio_queue.rb_node;
struct rb_node *next;
struct pkt_rb_node *tmp;
if (!n) {
BUG_ON(pd->bio_queue_size > 0);
return NULL;
}
for (;;) {
tmp = rb_entry(n, struct pkt_rb_node, rb_node);
if (s <= tmp->bio->bi_sector)
next = n->rb_left;
else
next = n->rb_right;
if (!next)
break;
n = next;
}
if (s > tmp->bio->bi_sector) {
tmp = pkt_rbtree_next(tmp);
if (!tmp)
return NULL;
}
BUG_ON(s > tmp->bio->bi_sector);
return tmp;
}
/*
* Insert a node into the pd->bio_queue rb tree.
*/
static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
{
struct rb_node **p = &pd->bio_queue.rb_node;
struct rb_node *parent = NULL;
sector_t s = node->bio->bi_sector;
struct pkt_rb_node *tmp;
while (*p) {
parent = *p;
tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
if (s < tmp->bio->bi_sector)
p = &(*p)->rb_left;
else
p = &(*p)->rb_right;
}
rb_link_node(&node->rb_node, parent, p);
rb_insert_color(&node->rb_node, &pd->bio_queue);
pd->bio_queue_size++;
}
/*
* Add a bio to a single linked list defined by its head and tail pointers.
*/
static inline void pkt_add_list_last(struct bio *bio, struct bio **list_head, struct bio **list_tail)
{
bio->bi_next = NULL;
if (*list_tail) {
BUG_ON((*list_head) == NULL);
(*list_tail)->bi_next = bio;
(*list_tail) = bio;
} else {
BUG_ON((*list_head) != NULL);
(*list_head) = bio;
(*list_tail) = bio;
}
}
/*
* Remove and return the first bio from a single linked list defined by its
* head and tail pointers.
*/
static inline struct bio *pkt_get_list_first(struct bio **list_head, struct bio **list_tail)
{
struct bio *bio;
if (*list_head == NULL)
return NULL;
bio = *list_head;
*list_head = bio->bi_next;
if (*list_head == NULL)
*list_tail = NULL;
bio->bi_next = NULL;
return bio;
}
/*
* Send a packet_command to the underlying block device and
* wait for completion.
*/
static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
{
char sense[SCSI_SENSE_BUFFERSIZE];
request_queue_t *q;
struct request *rq;
DECLARE_COMPLETION(wait);
int err = 0;
q = bdev_get_queue(pd->bdev);
rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ? WRITE : READ,
__GFP_WAIT);
rq->errors = 0;
rq->rq_disk = pd->bdev->bd_disk;
rq->bio = NULL;
rq->buffer = NULL;
rq->timeout = 60*HZ;
rq->data = cgc->buffer;
rq->data_len = cgc->buflen;
rq->sense = sense;
memset(sense, 0, sizeof(sense));
rq->sense_len = 0;
rq->flags |= REQ_BLOCK_PC | REQ_HARDBARRIER;
if (cgc->quiet)
rq->flags |= REQ_QUIET;
memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
if (sizeof(rq->cmd) > CDROM_PACKET_SIZE)
memset(rq->cmd + CDROM_PACKET_SIZE, 0, sizeof(rq->cmd) - CDROM_PACKET_SIZE);
rq->ref_count++;
rq->flags |= REQ_NOMERGE;
rq->waiting = &wait;
rq->end_io = blk_end_sync_rq;
elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 1);
generic_unplug_device(q);
wait_for_completion(&wait);
if (rq->errors)
err = -EIO;
blk_put_request(rq);
return err;
}
/*
* A generic sense dump / resolve mechanism should be implemented across
* all ATAPI + SCSI devices.
*/
static void pkt_dump_sense(struct packet_command *cgc)
{
static char *info[9] = { "No sense", "Recovered error", "Not ready",
"Medium error", "Hardware error", "Illegal request",
"Unit attention", "Data protect", "Blank check" };
int i;
struct request_sense *sense = cgc->sense;
printk("pktcdvd:");
for (i = 0; i < CDROM_PACKET_SIZE; i++)
printk(" %02x", cgc->cmd[i]);
printk(" - ");
if (sense == NULL) {
printk("no sense\n");
return;
}
printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
if (sense->sense_key > 8) {
printk(" (INVALID)\n");
return;
}
printk(" (%s)\n", info[sense->sense_key]);
}
/*
* flush the drive cache to media
*/
static int pkt_flush_cache(struct pktcdvd_device *pd)
{
struct packet_command cgc;
init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
cgc.cmd[0] = GPCMD_FLUSH_CACHE;
cgc.quiet = 1;
/*
* the IMMED bit -- we default to not setting it, although that
* would allow a much faster close, this is safer
*/
#if 0
cgc.cmd[1] = 1 << 1;
#endif
return pkt_generic_packet(pd, &cgc);
}
/*
* speed is given as the normal factor, e.g. 4 for 4x
*/
static int pkt_set_speed(struct pktcdvd_device *pd, unsigned write_speed, unsigned read_speed)
{
struct packet_command cgc;
struct request_sense sense;
int ret;
init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
cgc.sense = &sense;
cgc.cmd[0] = GPCMD_SET_SPEED;
cgc.cmd[2] = (read_speed >> 8) & 0xff;
cgc.cmd[3] = read_speed & 0xff;
cgc.cmd[4] = (write_speed >> 8) & 0xff;
cgc.cmd[5] = write_speed & 0xff;
if ((ret = pkt_generic_packet(pd, &cgc)))
pkt_dump_sense(&cgc);
return ret;
}
/*
* Queue a bio for processing by the low-level CD device. Must be called
* from process context.
*/
static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
{
spin_lock(&pd->iosched.lock);
if (bio_data_dir(bio) == READ) {
pkt_add_list_last(bio, &pd->iosched.read_queue,
&pd->iosched.read_queue_tail);
} else {
pkt_add_list_last(bio, &pd->iosched.write_queue,
&pd->iosched.write_queue_tail);
}
spin_unlock(&pd->iosched.lock);
atomic_set(&pd->iosched.attention, 1);
wake_up(&pd->wqueue);
}
/*
* Process the queued read/write requests. This function handles special
* requirements for CDRW drives:
* - A cache flush command must be inserted before a read request if the
* previous request was a write.
* - Switching between reading and writing is slow, so don't do it more often
* than necessary.
* - Optimize for throughput at the expense of latency. This means that streaming
* writes will never be interrupted by a read, but if the drive has to seek
* before the next write, switch to reading instead if there are any pending
* read requests.
* - Set the read speed according to current usage pattern. When only reading
* from the device, it's best to use the highest possible read speed, but
* when switching often between reading and writing, it's better to have the
* same read and write speeds.
*/
static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
{
if (atomic_read(&pd->iosched.attention) == 0)
return;
atomic_set(&pd->iosched.attention, 0);
for (;;) {
struct bio *bio;
int reads_queued, writes_queued;
spin_lock(&pd->iosched.lock);
reads_queued = (pd->iosched.read_queue != NULL);
writes_queued = (pd->iosched.write_queue != NULL);
spin_unlock(&pd->iosched.lock);
if (!reads_queued && !writes_queued)
break;
if (pd->iosched.writing) {
int need_write_seek = 1;
spin_lock(&pd->iosched.lock);
bio = pd->iosched.write_queue;
spin_unlock(&pd->iosched.lock);
if (bio && (bio->bi_sector == pd->iosched.last_write))
need_write_seek = 0;
if (need_write_seek && reads_queued) {
if (atomic_read(&pd->cdrw.pending_bios) > 0) {
VPRINTK("pktcdvd: write, waiting\n");
break;
}
pkt_flush_cache(pd);
pd->iosched.writing = 0;
}
} else {
if (!reads_queued && writes_queued) {
if (atomic_read(&pd->cdrw.pending_bios) > 0) {
VPRINTK("pktcdvd: read, waiting\n");
break;
}
pd->iosched.writing = 1;
}
}
spin_lock(&pd->iosched.lock);
if (pd->iosched.writing) {
bio = pkt_get_list_first(&pd->iosched.write_queue,
&pd->iosched.write_queue_tail);
} else {
bio = pkt_get_list_first(&pd->iosched.read_queue,
&pd->iosched.read_queue_tail);
}
spin_unlock(&pd->iosched.lock);
if (!bio)
continue;
if (bio_data_dir(bio) == READ)
pd->iosched.successive_reads += bio->bi_size >> 10;
else {
pd->iosched.successive_reads = 0;
pd->iosched.last_write = bio->bi_sector + bio_sectors(bio);
}
if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
if (pd->read_speed == pd->write_speed) {
pd->read_speed = MAX_SPEED;
pkt_set_speed(pd, pd->write_speed, pd->read_speed);
}
} else {
if (pd->read_speed != pd->write_speed) {
pd->read_speed = pd->write_speed;
pkt_set_speed(pd, pd->write_speed, pd->read_speed);
}
}
atomic_inc(&pd->cdrw.pending_bios);
generic_make_request(bio);
}
}
/*
* Special care is needed if the underlying block device has a small
* max_phys_segments value.
*/
static int pkt_set_segment_merging(struct pktcdvd_device *pd, request_queue_t *q)
{
if ((pd->settings.size << 9) / CD_FRAMESIZE <= q->max_phys_segments) {
/*
* The cdrom device can handle one segment/frame
*/
clear_bit(PACKET_MERGE_SEGS, &pd->flags);
return 0;
} else if ((pd->settings.size << 9) / PAGE_SIZE <= q->max_phys_segments) {
/*
* We can handle this case at the expense of some extra memory
* copies during write operations
*/
set_bit(PACKET_MERGE_SEGS, &pd->flags);
return 0;
} else {
printk("pktcdvd: cdrom max_phys_segments too small\n");
return -EIO;
}
}
/*
* Copy CD_FRAMESIZE bytes from src_bio into a destination page
*/
static void pkt_copy_bio_data(struct bio *src_bio, int seg, int offs, struct page *dst_page, int dst_offs)
{
unsigned int copy_size = CD_FRAMESIZE;
while (copy_size > 0) {
struct bio_vec *src_bvl = bio_iovec_idx(src_bio, seg);
void *vfrom = kmap_atomic(src_bvl->bv_page, KM_USER0) +
src_bvl->bv_offset + offs;
void *vto = page_address(dst_page) + dst_offs;
int len = min_t(int, copy_size, src_bvl->bv_len - offs);
BUG_ON(len < 0);
memcpy(vto, vfrom, len);
kunmap_atomic(vfrom, KM_USER0);
seg++;
offs = 0;
dst_offs += len;
copy_size -= len;
}
}
/*
* Copy all data for this packet to pkt->pages[], so that
* a) The number of required segments for the write bio is minimized, which
* is necessary for some scsi controllers.
* b) The data can be used as cache to avoid read requests if we receive a
* new write request for the same zone.
*/
static void pkt_make_local_copy(struct packet_data *pkt, struct page **pages, int *offsets)
{
int f, p, offs;
/* Copy all data to pkt->pages[] */
p = 0;
offs = 0;
for (f = 0; f < pkt->frames; f++) {
if (pages[f] != pkt->pages[p]) {
void *vfrom = kmap_atomic(pages[f], KM_USER0) + offsets[f];
void *vto = page_address(pkt->pages[p]) + offs;
memcpy(vto, vfrom, CD_FRAMESIZE);
kunmap_atomic(vfrom, KM_USER0);
pages[f] = pkt->pages[p];
offsets[f] = offs;
} else {
BUG_ON(offsets[f] != offs);
}
offs += CD_FRAMESIZE;
if (offs >= PAGE_SIZE) {
offs = 0;
p++;
}
}
}
static int pkt_end_io_read(struct bio *bio, unsigned int bytes_done, int err)
{
struct packet_data *pkt = bio->bi_private;
struct pktcdvd_device *pd = pkt->pd;
BUG_ON(!pd);
if (bio->bi_size)
return 1;
VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
(unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
if (err)
atomic_inc(&pkt->io_errors);
if (atomic_dec_and_test(&pkt->io_wait)) {
atomic_inc(&pkt->run_sm);
wake_up(&pd->wqueue);
}
pkt_bio_finished(pd);
return 0;
}
static int pkt_end_io_packet_write(struct bio *bio, unsigned int bytes_done, int err)
{
struct packet_data *pkt = bio->bi_private;
struct pktcdvd_device *pd = pkt->pd;
BUG_ON(!pd);
if (bio->bi_size)
return 1;
VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
pd->stats.pkt_ended++;
pkt_bio_finished(pd);
atomic_dec(&pkt->io_wait);
atomic_inc(&pkt->run_sm);
wake_up(&pd->wqueue);
return 0;
}
/*
* Schedule reads for the holes in a packet
*/
static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
{
int frames_read = 0;
struct bio *bio;
int f;
char written[PACKET_MAX_SIZE];
BUG_ON(!pkt->orig_bios);
atomic_set(&pkt->io_wait, 0);
atomic_set(&pkt->io_errors, 0);
/*
* Figure out which frames we need to read before we can write.
*/
memset(written, 0, sizeof(written));
spin_lock(&pkt->lock);
for (bio = pkt->orig_bios; bio; bio = bio->bi_next) {
int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
int num_frames = bio->bi_size / CD_FRAMESIZE;
pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
BUG_ON(first_frame < 0);
BUG_ON(first_frame + num_frames > pkt->frames);
for (f = first_frame; f < first_frame + num_frames; f++)
written[f] = 1;
}
spin_unlock(&pkt->lock);
if (pkt->cache_valid) {
VPRINTK("pkt_gather_data: zone %llx cached\n",
(unsigned long long)pkt->sector);
goto out_account;
}
/*
* Schedule reads for missing parts of the packet.
*/
for (f = 0; f < pkt->frames; f++) {
int p, offset;
if (written[f])
continue;
bio = pkt->r_bios[f];
bio_init(bio);
bio->bi_max_vecs = 1;
bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
bio->bi_bdev = pd->bdev;
bio->bi_end_io = pkt_end_io_read;
bio->bi_private = pkt;
p = (f * CD_FRAMESIZE) / PAGE_SIZE;
offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
f, pkt->pages[p], offset);
if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
BUG();
atomic_inc(&pkt->io_wait);
bio->bi_rw = READ;
pkt_queue_bio(pd, bio);
frames_read++;
}
out_account:
VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
frames_read, (unsigned long long)pkt->sector);
pd->stats.pkt_started++;
pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
}
/*
* Find a packet matching zone, or the least recently used packet if
* there is no match.
*/
static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
{
struct packet_data *pkt;
list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
list_del_init(&pkt->list);
if (pkt->sector != zone)
pkt->cache_valid = 0;
return pkt;
}
}
BUG();
return NULL;
}
static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
{
if (pkt->cache_valid) {
list_add(&pkt->list, &pd->cdrw.pkt_free_list);
} else {
list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
}
}
/*
* recover a failed write, query for relocation if possible
*
* returns 1 if recovery is possible, or 0 if not
*
*/
static int pkt_start_recovery(struct packet_data *pkt)
{
/*
* FIXME. We need help from the file system to implement
* recovery handling.
*/
return 0;
#if 0
struct request *rq = pkt->rq;
struct pktcdvd_device *pd = rq->rq_disk->private_data;
struct block_device *pkt_bdev;
struct super_block *sb = NULL;
unsigned long old_block, new_block;
sector_t new_sector;
pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
if (pkt_bdev) {
sb = get_super(pkt_bdev);
bdput(pkt_bdev);
}
if (!sb)
return 0;
if (!sb->s_op || !sb->s_op->relocate_blocks)
goto out;
old_block = pkt->sector / (CD_FRAMESIZE >> 9);
if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
goto out;
new_sector = new_block * (CD_FRAMESIZE >> 9);
pkt->sector = new_sector;
pkt->bio->bi_sector = new_sector;
pkt->bio->bi_next = NULL;
pkt->bio->bi_flags = 1 << BIO_UPTODATE;
pkt->bio->bi_idx = 0;
BUG_ON(pkt->bio->bi_rw != (1 << BIO_RW));
BUG_ON(pkt->bio->bi_vcnt != pkt->frames);
BUG_ON(pkt->bio->bi_size != pkt->frames * CD_FRAMESIZE);
BUG_ON(pkt->bio->bi_end_io != pkt_end_io_packet_write);
BUG_ON(pkt->bio->bi_private != pkt);
drop_super(sb);
return 1;
out:
drop_super(sb);
return 0;
#endif
}
static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
{
#if PACKET_DEBUG > 1
static const char *state_name[] = {
"IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
};
enum packet_data_state old_state = pkt->state;
VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
state_name[old_state], state_name[state]);
#endif
pkt->state = state;
}
/*
* Scan the work queue to see if we can start a new packet.
* returns non-zero if any work was done.
*/
static int pkt_handle_queue(struct pktcdvd_device *pd)
{
struct packet_data *pkt, *p;
struct bio *bio = NULL;
sector_t zone = 0; /* Suppress gcc warning */
struct pkt_rb_node *node, *first_node;
struct rb_node *n;
VPRINTK("handle_queue\n");
atomic_set(&pd->scan_queue, 0);
if (list_empty(&pd->cdrw.pkt_free_list)) {
VPRINTK("handle_queue: no pkt\n");
return 0;
}
/*
* Try to find a zone we are not already working on.
*/
spin_lock(&pd->lock);
first_node = pkt_rbtree_find(pd, pd->current_sector);
if (!first_node) {
n = rb_first(&pd->bio_queue);
if (n)
first_node = rb_entry(n, struct pkt_rb_node, rb_node);
}
node = first_node;
while (node) {
bio = node->bio;
zone = ZONE(bio->bi_sector, pd);
list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
if (p->sector == zone) {
bio = NULL;
goto try_next_bio;
}
}
break;
try_next_bio:
node = pkt_rbtree_next(node);
if (!node) {
n = rb_first(&pd->bio_queue);
if (n)
node = rb_entry(n, struct pkt_rb_node, rb_node);
}
if (node == first_node)
node = NULL;
}
spin_unlock(&pd->lock);
if (!bio) {
VPRINTK("handle_queue: no bio\n");
return 0;
}
pkt = pkt_get_packet_data(pd, zone);
pd->current_sector = zone + pd->settings.size;
pkt->sector = zone;
pkt->frames = pd->settings.size >> 2;
pkt->write_size = 0;
/*
* Scan work queue for bios in the same zone and link them
* to this packet.
*/
spin_lock(&pd->lock);
VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
bio = node->bio;
VPRINTK("pkt_handle_queue: found zone=%llx\n",
(unsigned long long)ZONE(bio->bi_sector, pd));
if (ZONE(bio->bi_sector, pd) != zone)
break;
pkt_rbtree_erase(pd, node);
spin_lock(&pkt->lock);
pkt_add_list_last(bio, &pkt->orig_bios, &pkt->orig_bios_tail);
pkt->write_size += bio->bi_size / CD_FRAMESIZE;
spin_unlock(&pkt->lock);
}
spin_unlock(&pd->lock);
pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
pkt_set_state(pkt, PACKET_WAITING_STATE);
atomic_set(&pkt->run_sm, 1);
spin_lock(&pd->cdrw.active_list_lock);
list_add(&pkt->list, &pd->cdrw.pkt_active_list);
spin_unlock(&pd->cdrw.active_list_lock);
return 1;
}
/*
* Assemble a bio to write one packet and queue the bio for processing
* by the underlying block device.
*/
static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
{
struct bio *bio;
struct page *pages[PACKET_MAX_SIZE];
int offsets[PACKET_MAX_SIZE];
int f;
int frames_write;
for (f = 0; f < pkt->frames; f++) {