forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtimekeeping.c
2492 lines (2130 loc) · 70.6 KB
/
timekeeping.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0
/*
* Kernel timekeeping code and accessor functions. Based on code from
* timer.c, moved in commit 8524070b7982.
*/
#include <linux/timekeeper_internal.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/percpu.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/nmi.h>
#include <linux/sched.h>
#include <linux/sched/loadavg.h>
#include <linux/sched/clock.h>
#include <linux/syscore_ops.h>
#include <linux/clocksource.h>
#include <linux/jiffies.h>
#include <linux/time.h>
#include <linux/tick.h>
#include <linux/stop_machine.h>
#include <linux/pvclock_gtod.h>
#include <linux/compiler.h>
#include <linux/audit.h>
#include "tick-internal.h"
#include "ntp_internal.h"
#include "timekeeping_internal.h"
#define TK_CLEAR_NTP (1 << 0)
#define TK_MIRROR (1 << 1)
#define TK_CLOCK_WAS_SET (1 << 2)
enum timekeeping_adv_mode {
/* Update timekeeper when a tick has passed */
TK_ADV_TICK,
/* Update timekeeper on a direct frequency change */
TK_ADV_FREQ
};
DEFINE_RAW_SPINLOCK(timekeeper_lock);
/*
* The most important data for readout fits into a single 64 byte
* cache line.
*/
static struct {
seqcount_raw_spinlock_t seq;
struct timekeeper timekeeper;
} tk_core ____cacheline_aligned = {
.seq = SEQCNT_RAW_SPINLOCK_ZERO(tk_core.seq, &timekeeper_lock),
};
static struct timekeeper shadow_timekeeper;
/* flag for if timekeeping is suspended */
int __read_mostly timekeeping_suspended;
/**
* struct tk_fast - NMI safe timekeeper
* @seq: Sequence counter for protecting updates. The lowest bit
* is the index for the tk_read_base array
* @base: tk_read_base array. Access is indexed by the lowest bit of
* @seq.
*
* See @update_fast_timekeeper() below.
*/
struct tk_fast {
seqcount_latch_t seq;
struct tk_read_base base[2];
};
/* Suspend-time cycles value for halted fast timekeeper. */
static u64 cycles_at_suspend;
static u64 dummy_clock_read(struct clocksource *cs)
{
if (timekeeping_suspended)
return cycles_at_suspend;
return local_clock();
}
static struct clocksource dummy_clock = {
.read = dummy_clock_read,
};
/*
* Boot time initialization which allows local_clock() to be utilized
* during early boot when clocksources are not available. local_clock()
* returns nanoseconds already so no conversion is required, hence mult=1
* and shift=0. When the first proper clocksource is installed then
* the fast time keepers are updated with the correct values.
*/
#define FAST_TK_INIT \
{ \
.clock = &dummy_clock, \
.mask = CLOCKSOURCE_MASK(64), \
.mult = 1, \
.shift = 0, \
}
static struct tk_fast tk_fast_mono ____cacheline_aligned = {
.seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq),
.base[0] = FAST_TK_INIT,
.base[1] = FAST_TK_INIT,
};
static struct tk_fast tk_fast_raw ____cacheline_aligned = {
.seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq),
.base[0] = FAST_TK_INIT,
.base[1] = FAST_TK_INIT,
};
static inline void tk_normalize_xtime(struct timekeeper *tk)
{
while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
tk->xtime_sec++;
}
while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
tk->raw_sec++;
}
}
static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
{
struct timespec64 ts;
ts.tv_sec = tk->xtime_sec;
ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
return ts;
}
static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
{
tk->xtime_sec = ts->tv_sec;
tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
}
static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
{
tk->xtime_sec += ts->tv_sec;
tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
tk_normalize_xtime(tk);
}
static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
{
struct timespec64 tmp;
/*
* Verify consistency of: offset_real = -wall_to_monotonic
* before modifying anything
*/
set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
-tk->wall_to_monotonic.tv_nsec);
WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
tk->wall_to_monotonic = wtm;
set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
tk->offs_real = timespec64_to_ktime(tmp);
tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
}
static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
{
tk->offs_boot = ktime_add(tk->offs_boot, delta);
/*
* Timespec representation for VDSO update to avoid 64bit division
* on every update.
*/
tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot);
}
/*
* tk_clock_read - atomic clocksource read() helper
*
* This helper is necessary to use in the read paths because, while the
* seqcount ensures we don't return a bad value while structures are updated,
* it doesn't protect from potential crashes. There is the possibility that
* the tkr's clocksource may change between the read reference, and the
* clock reference passed to the read function. This can cause crashes if
* the wrong clocksource is passed to the wrong read function.
* This isn't necessary to use when holding the timekeeper_lock or doing
* a read of the fast-timekeeper tkrs (which is protected by its own locking
* and update logic).
*/
static inline u64 tk_clock_read(const struct tk_read_base *tkr)
{
struct clocksource *clock = READ_ONCE(tkr->clock);
return clock->read(clock);
}
#ifdef CONFIG_DEBUG_TIMEKEEPING
#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
{
u64 max_cycles = tk->tkr_mono.clock->max_cycles;
const char *name = tk->tkr_mono.clock->name;
if (offset > max_cycles) {
printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
offset, name, max_cycles);
printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
} else {
if (offset > (max_cycles >> 1)) {
printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
offset, name, max_cycles >> 1);
printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
}
}
if (tk->underflow_seen) {
if (jiffies - tk->last_warning > WARNING_FREQ) {
printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
printk_deferred(" Your kernel is probably still fine.\n");
tk->last_warning = jiffies;
}
tk->underflow_seen = 0;
}
if (tk->overflow_seen) {
if (jiffies - tk->last_warning > WARNING_FREQ) {
printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
printk_deferred(" Your kernel is probably still fine.\n");
tk->last_warning = jiffies;
}
tk->overflow_seen = 0;
}
}
static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
{
struct timekeeper *tk = &tk_core.timekeeper;
u64 now, last, mask, max, delta;
unsigned int seq;
/*
* Since we're called holding a seqcount, the data may shift
* under us while we're doing the calculation. This can cause
* false positives, since we'd note a problem but throw the
* results away. So nest another seqcount here to atomically
* grab the points we are checking with.
*/
do {
seq = read_seqcount_begin(&tk_core.seq);
now = tk_clock_read(tkr);
last = tkr->cycle_last;
mask = tkr->mask;
max = tkr->clock->max_cycles;
} while (read_seqcount_retry(&tk_core.seq, seq));
delta = clocksource_delta(now, last, mask);
/*
* Try to catch underflows by checking if we are seeing small
* mask-relative negative values.
*/
if (unlikely((~delta & mask) < (mask >> 3))) {
tk->underflow_seen = 1;
delta = 0;
}
/* Cap delta value to the max_cycles values to avoid mult overflows */
if (unlikely(delta > max)) {
tk->overflow_seen = 1;
delta = tkr->clock->max_cycles;
}
return delta;
}
#else
static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
{
}
static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
{
u64 cycle_now, delta;
/* read clocksource */
cycle_now = tk_clock_read(tkr);
/* calculate the delta since the last update_wall_time */
delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
return delta;
}
#endif
/**
* tk_setup_internals - Set up internals to use clocksource clock.
*
* @tk: The target timekeeper to setup.
* @clock: Pointer to clocksource.
*
* Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
* pair and interval request.
*
* Unless you're the timekeeping code, you should not be using this!
*/
static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
{
u64 interval;
u64 tmp, ntpinterval;
struct clocksource *old_clock;
++tk->cs_was_changed_seq;
old_clock = tk->tkr_mono.clock;
tk->tkr_mono.clock = clock;
tk->tkr_mono.mask = clock->mask;
tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
tk->tkr_raw.clock = clock;
tk->tkr_raw.mask = clock->mask;
tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
/* Do the ns -> cycle conversion first, using original mult */
tmp = NTP_INTERVAL_LENGTH;
tmp <<= clock->shift;
ntpinterval = tmp;
tmp += clock->mult/2;
do_div(tmp, clock->mult);
if (tmp == 0)
tmp = 1;
interval = (u64) tmp;
tk->cycle_interval = interval;
/* Go back from cycles -> shifted ns */
tk->xtime_interval = interval * clock->mult;
tk->xtime_remainder = ntpinterval - tk->xtime_interval;
tk->raw_interval = interval * clock->mult;
/* if changing clocks, convert xtime_nsec shift units */
if (old_clock) {
int shift_change = clock->shift - old_clock->shift;
if (shift_change < 0) {
tk->tkr_mono.xtime_nsec >>= -shift_change;
tk->tkr_raw.xtime_nsec >>= -shift_change;
} else {
tk->tkr_mono.xtime_nsec <<= shift_change;
tk->tkr_raw.xtime_nsec <<= shift_change;
}
}
tk->tkr_mono.shift = clock->shift;
tk->tkr_raw.shift = clock->shift;
tk->ntp_error = 0;
tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
/*
* The timekeeper keeps its own mult values for the currently
* active clocksource. These value will be adjusted via NTP
* to counteract clock drifting.
*/
tk->tkr_mono.mult = clock->mult;
tk->tkr_raw.mult = clock->mult;
tk->ntp_err_mult = 0;
tk->skip_second_overflow = 0;
}
/* Timekeeper helper functions. */
#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
static u32 default_arch_gettimeoffset(void) { return 0; }
u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
#else
static inline u32 arch_gettimeoffset(void) { return 0; }
#endif
static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
{
u64 nsec;
nsec = delta * tkr->mult + tkr->xtime_nsec;
nsec >>= tkr->shift;
/* If arch requires, add in get_arch_timeoffset() */
return nsec + arch_gettimeoffset();
}
static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
{
u64 delta;
delta = timekeeping_get_delta(tkr);
return timekeeping_delta_to_ns(tkr, delta);
}
static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
{
u64 delta;
/* calculate the delta since the last update_wall_time */
delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
return timekeeping_delta_to_ns(tkr, delta);
}
/**
* update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
* @tkr: Timekeeping readout base from which we take the update
* @tkf: Pointer to NMI safe timekeeper
*
* We want to use this from any context including NMI and tracing /
* instrumenting the timekeeping code itself.
*
* Employ the latch technique; see @raw_write_seqcount_latch.
*
* So if a NMI hits the update of base[0] then it will use base[1]
* which is still consistent. In the worst case this can result is a
* slightly wrong timestamp (a few nanoseconds). See
* @ktime_get_mono_fast_ns.
*/
static void update_fast_timekeeper(const struct tk_read_base *tkr,
struct tk_fast *tkf)
{
struct tk_read_base *base = tkf->base;
/* Force readers off to base[1] */
raw_write_seqcount_latch(&tkf->seq);
/* Update base[0] */
memcpy(base, tkr, sizeof(*base));
/* Force readers back to base[0] */
raw_write_seqcount_latch(&tkf->seq);
/* Update base[1] */
memcpy(base + 1, base, sizeof(*base));
}
static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
{
struct tk_read_base *tkr;
unsigned int seq;
u64 now;
do {
seq = raw_read_seqcount_latch(&tkf->seq);
tkr = tkf->base + (seq & 0x01);
now = ktime_to_ns(tkr->base);
now += timekeeping_delta_to_ns(tkr,
clocksource_delta(
tk_clock_read(tkr),
tkr->cycle_last,
tkr->mask));
} while (read_seqcount_latch_retry(&tkf->seq, seq));
return now;
}
/**
* ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
*
* This timestamp is not guaranteed to be monotonic across an update.
* The timestamp is calculated by:
*
* now = base_mono + clock_delta * slope
*
* So if the update lowers the slope, readers who are forced to the
* not yet updated second array are still using the old steeper slope.
*
* tmono
* ^
* | o n
* | o n
* | u
* | o
* |o
* |12345678---> reader order
*
* o = old slope
* u = update
* n = new slope
*
* So reader 6 will observe time going backwards versus reader 5.
*
* While other CPUs are likely to be able to observe that, the only way
* for a CPU local observation is when an NMI hits in the middle of
* the update. Timestamps taken from that NMI context might be ahead
* of the following timestamps. Callers need to be aware of that and
* deal with it.
*/
u64 ktime_get_mono_fast_ns(void)
{
return __ktime_get_fast_ns(&tk_fast_mono);
}
EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
/**
* ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
*
* Contrary to ktime_get_mono_fast_ns() this is always correct because the
* conversion factor is not affected by NTP/PTP correction.
*/
u64 ktime_get_raw_fast_ns(void)
{
return __ktime_get_fast_ns(&tk_fast_raw);
}
EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
/**
* ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
*
* To keep it NMI safe since we're accessing from tracing, we're not using a
* separate timekeeper with updates to monotonic clock and boot offset
* protected with seqcounts. This has the following minor side effects:
*
* (1) Its possible that a timestamp be taken after the boot offset is updated
* but before the timekeeper is updated. If this happens, the new boot offset
* is added to the old timekeeping making the clock appear to update slightly
* earlier:
* CPU 0 CPU 1
* timekeeping_inject_sleeptime64()
* __timekeeping_inject_sleeptime(tk, delta);
* timestamp();
* timekeeping_update(tk, TK_CLEAR_NTP...);
*
* (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
* partially updated. Since the tk->offs_boot update is a rare event, this
* should be a rare occurrence which postprocessing should be able to handle.
*
* The caveats vs. timestamp ordering as documented for ktime_get_fast_ns()
* apply as well.
*/
u64 notrace ktime_get_boot_fast_ns(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
}
EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono)
{
struct tk_read_base *tkr;
u64 basem, baser, delta;
unsigned int seq;
do {
seq = raw_read_seqcount_latch(&tkf->seq);
tkr = tkf->base + (seq & 0x01);
basem = ktime_to_ns(tkr->base);
baser = ktime_to_ns(tkr->base_real);
delta = timekeeping_delta_to_ns(tkr,
clocksource_delta(tk_clock_read(tkr),
tkr->cycle_last, tkr->mask));
} while (read_seqcount_latch_retry(&tkf->seq, seq));
if (mono)
*mono = basem + delta;
return baser + delta;
}
/**
* ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
*
* See ktime_get_fast_ns() for documentation of the time stamp ordering.
*/
u64 ktime_get_real_fast_ns(void)
{
return __ktime_get_real_fast(&tk_fast_mono, NULL);
}
EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
/**
* ktime_get_fast_timestamps: - NMI safe timestamps
* @snapshot: Pointer to timestamp storage
*
* Stores clock monotonic, boottime and realtime timestamps.
*
* Boot time is a racy access on 32bit systems if the sleep time injection
* happens late during resume and not in timekeeping_resume(). That could
* be avoided by expanding struct tk_read_base with boot offset for 32bit
* and adding more overhead to the update. As this is a hard to observe
* once per resume event which can be filtered with reasonable effort using
* the accurate mono/real timestamps, it's probably not worth the trouble.
*
* Aside of that it might be possible on 32 and 64 bit to observe the
* following when the sleep time injection happens late:
*
* CPU 0 CPU 1
* timekeeping_resume()
* ktime_get_fast_timestamps()
* mono, real = __ktime_get_real_fast()
* inject_sleep_time()
* update boot offset
* boot = mono + bootoffset;
*
* That means that boot time already has the sleep time adjustment, but
* real time does not. On the next readout both are in sync again.
*
* Preventing this for 64bit is not really feasible without destroying the
* careful cache layout of the timekeeper because the sequence count and
* struct tk_read_base would then need two cache lines instead of one.
*
* Access to the time keeper clock source is disabled accross the innermost
* steps of suspend/resume. The accessors still work, but the timestamps
* are frozen until time keeping is resumed which happens very early.
*
* For regular suspend/resume there is no observable difference vs. sched
* clock, but it might affect some of the nasty low level debug printks.
*
* OTOH, access to sched clock is not guaranteed accross suspend/resume on
* all systems either so it depends on the hardware in use.
*
* If that turns out to be a real problem then this could be mitigated by
* using sched clock in a similar way as during early boot. But it's not as
* trivial as on early boot because it needs some careful protection
* against the clock monotonic timestamp jumping backwards on resume.
*/
void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot)
{
struct timekeeper *tk = &tk_core.timekeeper;
snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono);
snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot));
}
/**
* halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
* @tk: Timekeeper to snapshot.
*
* It generally is unsafe to access the clocksource after timekeeping has been
* suspended, so take a snapshot of the readout base of @tk and use it as the
* fast timekeeper's readout base while suspended. It will return the same
* number of cycles every time until timekeeping is resumed at which time the
* proper readout base for the fast timekeeper will be restored automatically.
*/
static void halt_fast_timekeeper(const struct timekeeper *tk)
{
static struct tk_read_base tkr_dummy;
const struct tk_read_base *tkr = &tk->tkr_mono;
memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
cycles_at_suspend = tk_clock_read(tkr);
tkr_dummy.clock = &dummy_clock;
tkr_dummy.base_real = tkr->base + tk->offs_real;
update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
tkr = &tk->tkr_raw;
memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
tkr_dummy.clock = &dummy_clock;
update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
}
static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
{
raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
}
/**
* pvclock_gtod_register_notifier - register a pvclock timedata update listener
* @nb: Pointer to the notifier block to register
*/
int pvclock_gtod_register_notifier(struct notifier_block *nb)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned long flags;
int ret;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
update_pvclock_gtod(tk, true);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
/**
* pvclock_gtod_unregister_notifier - unregister a pvclock
* timedata update listener
* @nb: Pointer to the notifier block to unregister
*/
int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
{
unsigned long flags;
int ret;
raw_spin_lock_irqsave(&timekeeper_lock, flags);
ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
/*
* tk_update_leap_state - helper to update the next_leap_ktime
*/
static inline void tk_update_leap_state(struct timekeeper *tk)
{
tk->next_leap_ktime = ntp_get_next_leap();
if (tk->next_leap_ktime != KTIME_MAX)
/* Convert to monotonic time */
tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
}
/*
* Update the ktime_t based scalar nsec members of the timekeeper
*/
static inline void tk_update_ktime_data(struct timekeeper *tk)
{
u64 seconds;
u32 nsec;
/*
* The xtime based monotonic readout is:
* nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
* The ktime based monotonic readout is:
* nsec = base_mono + now();
* ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
*/
seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
nsec = (u32) tk->wall_to_monotonic.tv_nsec;
tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
/*
* The sum of the nanoseconds portions of xtime and
* wall_to_monotonic can be greater/equal one second. Take
* this into account before updating tk->ktime_sec.
*/
nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
if (nsec >= NSEC_PER_SEC)
seconds++;
tk->ktime_sec = seconds;
/* Update the monotonic raw base */
tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
}
/* must hold timekeeper_lock */
static void timekeeping_update(struct timekeeper *tk, unsigned int action)
{
if (action & TK_CLEAR_NTP) {
tk->ntp_error = 0;
ntp_clear();
}
tk_update_leap_state(tk);
tk_update_ktime_data(tk);
update_vsyscall(tk);
update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
if (action & TK_CLOCK_WAS_SET)
tk->clock_was_set_seq++;
/*
* The mirroring of the data to the shadow-timekeeper needs
* to happen last here to ensure we don't over-write the
* timekeeper structure on the next update with stale data
*/
if (action & TK_MIRROR)
memcpy(&shadow_timekeeper, &tk_core.timekeeper,
sizeof(tk_core.timekeeper));
}
/**
* timekeeping_forward_now - update clock to the current time
* @tk: Pointer to the timekeeper to update
*
* Forward the current clock to update its state since the last call to
* update_wall_time(). This is useful before significant clock changes,
* as it avoids having to deal with this time offset explicitly.
*/
static void timekeeping_forward_now(struct timekeeper *tk)
{
u64 cycle_now, delta;
cycle_now = tk_clock_read(&tk->tkr_mono);
delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
tk->tkr_mono.cycle_last = cycle_now;
tk->tkr_raw.cycle_last = cycle_now;
tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
/* If arch requires, add in get_arch_timeoffset() */
tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
/* If arch requires, add in get_arch_timeoffset() */
tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
tk_normalize_xtime(tk);
}
/**
* ktime_get_real_ts64 - Returns the time of day in a timespec64.
* @ts: pointer to the timespec to be set
*
* Returns the time of day in a timespec64 (WARN if suspended).
*/
void ktime_get_real_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
u64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
ts->tv_sec = tk->xtime_sec;
nsecs = timekeeping_get_ns(&tk->tkr_mono);
} while (read_seqcount_retry(&tk_core.seq, seq));
ts->tv_nsec = 0;
timespec64_add_ns(ts, nsecs);
}
EXPORT_SYMBOL(ktime_get_real_ts64);
ktime_t ktime_get(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base;
u64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
base = tk->tkr_mono.base;
nsecs = timekeeping_get_ns(&tk->tkr_mono);
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get);
u32 ktime_get_resolution_ns(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
u32 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
} while (read_seqcount_retry(&tk_core.seq, seq));
return nsecs;
}
EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
static ktime_t *offsets[TK_OFFS_MAX] = {
[TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
[TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
[TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
};
ktime_t ktime_get_with_offset(enum tk_offsets offs)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base, *offset = offsets[offs];
u64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
base = ktime_add(tk->tkr_mono.base, *offset);
nsecs = timekeeping_get_ns(&tk->tkr_mono);
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_with_offset);
ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base, *offset = offsets[offs];
u64 nsecs;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
base = ktime_add(tk->tkr_mono.base, *offset);
nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
/**
* ktime_mono_to_any() - convert mononotic time to any other time
* @tmono: time to convert.
* @offs: which offset to use
*/
ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
{
ktime_t *offset = offsets[offs];
unsigned int seq;
ktime_t tconv;
do {
seq = read_seqcount_begin(&tk_core.seq);
tconv = ktime_add(tmono, *offset);
} while (read_seqcount_retry(&tk_core.seq, seq));
return tconv;
}
EXPORT_SYMBOL_GPL(ktime_mono_to_any);
/**
* ktime_get_raw - Returns the raw monotonic time in ktime_t format
*/
ktime_t ktime_get_raw(void)
{
struct timekeeper *tk = &tk_core.timekeeper;
unsigned int seq;
ktime_t base;
u64 nsecs;
do {
seq = read_seqcount_begin(&tk_core.seq);
base = tk->tkr_raw.base;
nsecs = timekeeping_get_ns(&tk->tkr_raw);
} while (read_seqcount_retry(&tk_core.seq, seq));
return ktime_add_ns(base, nsecs);
}
EXPORT_SYMBOL_GPL(ktime_get_raw);
/**
* ktime_get_ts64 - get the monotonic clock in timespec64 format
* @ts: pointer to timespec variable
*
* The function calculates the monotonic clock from the realtime
* clock and the wall_to_monotonic offset and stores the result
* in normalized timespec64 format in the variable pointed to by @ts.
*/
void ktime_get_ts64(struct timespec64 *ts)
{
struct timekeeper *tk = &tk_core.timekeeper;
struct timespec64 tomono;
unsigned int seq;
u64 nsec;
WARN_ON(timekeeping_suspended);
do {
seq = read_seqcount_begin(&tk_core.seq);
ts->tv_sec = tk->xtime_sec;
nsec = timekeeping_get_ns(&tk->tkr_mono);
tomono = tk->wall_to_monotonic;
} while (read_seqcount_retry(&tk_core.seq, seq));
ts->tv_sec += tomono.tv_sec;
ts->tv_nsec = 0;
timespec64_add_ns(ts, nsec + tomono.tv_nsec);
}
EXPORT_SYMBOL_GPL(ktime_get_ts64);
/**
* ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
*
* Returns the seconds portion of CLOCK_MONOTONIC with a single non
* serialized read. tk->ktime_sec is of type 'unsigned long' so this
* works on both 32 and 64 bit systems. On 32 bit systems the readout
* covers ~136 years of uptime which should be enough to prevent
* premature wrap arounds.
*/
time64_t ktime_get_seconds(void)
{
struct timekeeper *tk = &tk_core.timekeeper;