forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
timeseries.py
360 lines (266 loc) · 10.4 KB
/
timeseries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
from vbench.api import Benchmark
from datetime import datetime
common_setup = """from pandas_vb_common import *
from datetime import timedelta
N = 100000
try:
rng = date_range('1/1/2000', periods=N, freq='min')
except NameError:
rng = DatetimeIndex('1/1/2000', periods=N, offset=datetools.Minute())
def date_range(start=None, end=None, periods=None, freq=None):
return DatetimeIndex(start, end, periods=periods, offset=freq)
if hasattr(Series, 'convert'):
Series.resample = Series.convert
ts = Series(np.random.randn(N), index=rng)
"""
#----------------------------------------------------------------------
# Lookup value in large time series, hash map population
setup = common_setup + """
rng = date_range('1/1/2000', periods=1500000, freq='s')
ts = Series(1, index=rng)
"""
stmt = "ts[ts.index[len(ts) // 2]]; ts.index._cleanup()"
timeseries_large_lookup_value = Benchmark(stmt, setup,
start_date=datetime(2012, 1, 1))
#----------------------------------------------------------------------
# Test slice minutely series
timeseries_slice_minutely = Benchmark('ts[:10000]', common_setup)
#----------------------------------------------------------------------
# Test conversion
setup = common_setup + """
"""
timeseries_1min_5min_ohlc = Benchmark(
"ts[:10000].resample('5min', how='ohlc')",
common_setup,
start_date=datetime(2012, 5, 1))
timeseries_1min_5min_mean = Benchmark(
"ts[:10000].resample('5min', how='mean')",
common_setup,
start_date=datetime(2012, 5, 1))
#----------------------------------------------------------------------
# Irregular alignment
setup = common_setup + """
lindex = np.random.permutation(N)[:N // 2]
rindex = np.random.permutation(N)[:N // 2]
left = Series(ts.values.take(lindex), index=ts.index.take(lindex))
right = Series(ts.values.take(rindex), index=ts.index.take(rindex))
"""
timeseries_add_irregular = Benchmark('left + right', setup)
#----------------------------------------------------------------------
# Sort large irregular time series
setup = common_setup + """
N = 100000
rng = date_range('1/1/2000', periods=N, freq='s')
rng = rng.take(np.random.permutation(N))
ts = Series(np.random.randn(N), index=rng)
"""
timeseries_sort_index = Benchmark('ts.sort_index()', setup,
start_date=datetime(2012, 4, 1))
#----------------------------------------------------------------------
# Shifting, add offset
setup = common_setup + """
rng = date_range('1/1/2000', periods=10000, freq='T')
"""
datetimeindex_add_offset = Benchmark('rng + timedelta(minutes=2)', setup,
start_date=datetime(2012, 4, 1))
setup = common_setup + """
N = 10000
rng = date_range('1/1/1990', periods=N, freq='53s')
ts = Series(np.random.randn(N), index=rng)
dates = date_range('1/1/1990', periods=N * 10, freq='5s')
"""
timeseries_asof_single = Benchmark('ts.asof(dates[0])', setup,
start_date=datetime(2012, 4, 27))
timeseries_asof = Benchmark('ts.asof(dates)', setup,
start_date=datetime(2012, 4, 27))
setup = setup + 'ts[250:5000] = np.nan'
timeseries_asof_nan = Benchmark('ts.asof(dates)', setup,
start_date=datetime(2012, 4, 27))
#----------------------------------------------------------------------
# Time zone stuff
setup = common_setup + """
rng = date_range('1/1/2000', '3/1/2000', tz='US/Eastern')
"""
timeseries_timestamp_tzinfo_cons = \
Benchmark('rng[0]', setup, start_date=datetime(2012, 5, 5))
#----------------------------------------------------------------------
# Resampling period
setup = common_setup + """
rng = period_range('1/1/2000', '1/1/2001', freq='T')
ts = Series(np.random.randn(len(rng)), index=rng)
"""
timeseries_period_downsample_mean = \
Benchmark("ts.resample('D', how='mean')", setup,
start_date=datetime(2012, 4, 25))
setup = common_setup + """
rng = date_range('1/1/2000', '1/1/2001', freq='T')
ts = Series(np.random.randn(len(rng)), index=rng)
"""
timeseries_timestamp_downsample_mean = \
Benchmark("ts.resample('D', how='mean')", setup,
start_date=datetime(2012, 4, 25))
#----------------------------------------------------------------------
# to_datetime
setup = common_setup + """
rng = date_range('1/1/2000', periods=20000, freq='h')
strings = [x.strftime('%Y-%m-%d %H:%M:%S') for x in rng]
"""
timeseries_to_datetime_iso8601 = \
Benchmark('to_datetime(strings)', setup,
start_date=datetime(2012, 7, 11))
setup = common_setup + """
rng = date_range('1/1/2000', periods=10000, freq='D')
strings = Series(rng.year*10000+rng.month*100+rng.day,dtype=np.int64).apply(str)
"""
timeseries_to_datetime_YYYYMMDD = \
Benchmark('to_datetime(strings,format="%Y%m%d")', setup,
start_date=datetime(2012, 7, 1))
# ---- infer_freq
# infer_freq
setup = common_setup + """
from pandas.tseries.frequencies import infer_freq
rng = date_range('1/1/1700', freq='D', periods=100000)
a = rng[:50000].append(rng[50002:])
"""
timeseries_infer_freq = \
Benchmark('infer_freq(a)', setup, start_date=datetime(2012, 7, 1))
# setitem PeriodIndex
setup = common_setup + """
rng = period_range('1/1/1990', freq='S', periods=20000)
df = DataFrame(index=range(len(rng)))
"""
period_setitem = \
Benchmark("df['col'] = rng", setup,
start_date=datetime(2012, 8, 1))
setup = common_setup + """
rng = date_range('1/1/2000 9:30', periods=10000, freq='S', tz='US/Eastern')
"""
datetimeindex_normalize = \
Benchmark('rng.normalize()', setup,
start_date=datetime(2012, 9, 1))
setup = common_setup + """
from pandas.tseries.offsets import Second
s1 = date_range('1/1/2000', periods=100, freq='S')
curr = s1[-1]
slst = []
for i in range(100):
slst.append(curr + Second()), periods=100, freq='S')
curr = slst[-1][-1]
"""
# dti_append_tz = \
# Benchmark('s1.append(slst)', setup, start_date=datetime(2012, 9, 1))
setup = common_setup + """
rng = date_range('1/1/2000', periods=1000, freq='H')
df = DataFrame(np.random.randn(len(rng), 2), rng)
"""
dti_reset_index = \
Benchmark('df.reset_index()', setup, start_date=datetime(2012, 9, 1))
setup = common_setup + """
rng = date_range('1/1/2000', periods=1000, freq='H',
tz='US/Eastern')
df = DataFrame(np.random.randn(len(rng), 2), index=rng)
"""
dti_reset_index_tz = \
Benchmark('df.reset_index()', setup, start_date=datetime(2012, 9, 1))
setup = common_setup + """
rng = date_range('1/1/2000', periods=1000, freq='T')
index = rng.repeat(10)
"""
datetimeindex_unique = Benchmark('index.unique()', setup,
start_date=datetime(2012, 7, 1))
# tz_localize with infer argument. This is an attempt to emulate the results
# of read_csv with duplicated data. Not passing infer_dst will fail
setup = common_setup + """
dst_rng = date_range('10/29/2000 1:00:00',
'10/29/2000 1:59:59', freq='S')
index = date_range('10/29/2000', '10/29/2000 00:59:59', freq='S')
index = index.append(dst_rng)
index = index.append(dst_rng)
index = index.append(date_range('10/29/2000 2:00:00',
'10/29/2000 3:00:00', freq='S'))
"""
datetimeindex_infer_dst = \
Benchmark('index.tz_localize("US/Eastern", infer_dst=True)',
setup, start_date=datetime(2013, 9, 30))
#----------------------------------------------------------------------
# Resampling: fast-path various functions
setup = common_setup + """
rng = date_range('20130101',periods=100000,freq='50L')
df = DataFrame(np.random.randn(100000,2),index=rng)
"""
dataframe_resample_mean_string = \
Benchmark("df.resample('1s', how='mean')", setup)
dataframe_resample_mean_numpy = \
Benchmark("df.resample('1s', how=np.mean)", setup)
dataframe_resample_min_string = \
Benchmark("df.resample('1s', how='min')", setup)
dataframe_resample_min_numpy = \
Benchmark("df.resample('1s', how=np.min)", setup)
dataframe_resample_max_string = \
Benchmark("df.resample('1s', how='max')", setup)
dataframe_resample_max_numpy = \
Benchmark("df.resample('1s', how=np.max)", setup)
#----------------------------------------------------------------------
# DatetimeConverter
setup = common_setup + """
from pandas.tseries.converter import DatetimeConverter
"""
datetimeindex_converter = \
Benchmark('DatetimeConverter.convert(rng, None, None)',
setup, start_date=datetime(2013, 1, 1))
# Adding custom business day
setup = common_setup + """
import datetime as dt
import pandas as pd
import numpy as np
date = dt.datetime(2011,1,1)
dt64 = np.datetime64('2011-01-01 09:00Z')
day = pd.offsets.Day()
year = pd.offsets.YearBegin()
cday = pd.offsets.CustomBusinessDay()
cme = pd.offsets.CustomBusinessMonthEnd()
"""
timeseries_day_incr = Benchmark("date + day",setup)
timeseries_day_apply = Benchmark("day.apply(date)",setup)
timeseries_year_incr = Benchmark("date + year",setup)
timeseries_year_apply = Benchmark("year.apply(date)",setup)
timeseries_custom_bday_incr = \
Benchmark("date + cday",setup)
timeseries_custom_bday_apply = \
Benchmark("cday.apply(date)",setup)
timeseries_custom_bday_apply_dt64 = \
Benchmark("cday.apply(dt64)",setup)
# Increment by n
timeseries_custom_bday_incr_n = \
Benchmark("date + 10 * cday",setup)
# Increment custom business month
timeseries_custom_bmonthend_incr = \
Benchmark("date + cme",setup)
timeseries_custom_bmonthend_incr_n = \
Benchmark("date + 10 * cme",setup)
#----------------------------------------------------------------------
# month/quarter/year start/end accessors
setup = common_setup + """
N = 10000
rng = date_range('1/1/1', periods=N, freq='B')
"""
timeseries_is_month_start = Benchmark('rng.is_month_start', setup,
start_date=datetime(2014, 4, 1))
#----------------------------------------------------------------------
# iterate over DatetimeIndex/PeriodIndex
setup = common_setup + """
N = 1000000
M = 10000
idx1 = date_range(start='20140101', freq='T', periods=N)
idx2 = period_range(start='20140101', freq='T', periods=N)
def iter_n(iterable, n=None):
i = 0
for _ in iterable:
i += 1
if n is not None and i > n:
break
"""
timeseries_iter_datetimeindex = Benchmark('iter_n(idx1)', setup)
timeseries_iter_periodindex = Benchmark('iter_n(idx2)', setup)
timeseries_iter_datetimeindex_preexit = Benchmark('iter_n(idx1, M)', setup)
timeseries_iter_periodindex_preexit = Benchmark('iter_n(idx2, M)', setup)