-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathutils.py
66 lines (52 loc) · 1.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import json
import torch
import gdown
from addict import Dict
def apply_trace_model_mode(mode=False):
def _apply_trace_model_mode(m):
if hasattr(m, 'trace_model'):
m.trace_model = mode
return _apply_trace_model_mode
def tensor_to_img(t, normalize=True, range=(-1, 1), to_numpy=True, rgb2bgr=True):
if normalize:
t.clamp_(min=range[0], max=range[1])
t.add_(-range[0]).div_(range[1] - range[0] + 1e-5)
img = t.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0)
if to_numpy:
img = img.to('cpu', torch.uint8).numpy()
if rgb2bgr:
img = img[:, :, ::-1]
return img
def download_ckpt(url, name, md5):
print(f"load pretrained model: {name}...")
ckpt_path = f"/tmp/{name}"
gdown.cached_download(url, ckpt_path, md5=md5)
ckpt = torch.load(ckpt_path, map_location="cpu")
return ckpt
def load_cfg(path):
with open(path) as stream:
cfg = Dict(json.load(stream))
return cfg
def save_cfg(path, cfg):
with open(path, 'w') as stream:
json.dump(cfg, stream, indent=4)
return cfg
def select_weights(ckpt, prefix="student."):
_ckpt = {}
for k, v in ckpt.items():
if k.startswith(prefix):
_ckpt[k.replace(prefix, "")] = v
return _ckpt
def load_weights(target, source_state):
from collections import OrderedDict
new_dict = OrderedDict()
for k, v in target.state_dict().items():
if k in source_state and v.size() == source_state[k].size():
new_dict[k] = source_state[k]
elif k in source_state and v.size() != source_state[k].size():
print(f"src: {source_state[k].size()}, tgt: {v.size()}")
new_dict[k] = v
else:
print(f"key {k} not loaded...")
new_dict[k] = v
target.load_state_dict(new_dict)