forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_tfrecord.py
237 lines (196 loc) · 9.19 KB
/
mnist_tfrecord.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
'''MNIST dataset with TFRecords, the standard TensorFlow data format.
TFRecord is a data format supported throughout TensorFlow.
This example demonstrates how to load TFRecord data using
Input Tensors. Input Tensors differ from the normal Keras
workflow because instead of fitting to data loaded into a
a numpy array, data is supplied via a special tensor that
reads data from nodes that are wired directly into model
graph with the `Input(tensor=input_tensor)` parameter.
There are several advantages to using Input Tensors.
First, if a dataset is already in TFRecord format you
can load and train on that data directly in Keras.
Second, extended backend API capabilities such as TensorFlow
data augmentation is easy to integrate directly into your
Keras training scripts via input tensors.
Third, TensorFlow implements several data APIs for
TFRecords, some of which provide significantly faster
training performance than numpy arrays can provide because
they run via the C++ backend. Please note that this
example is tailored for brevity and clarity and not
to demonstrate performance or augmentation capabilities.
Input Tensors also have important disadvantages. In
particular, Input Tensors are fixed at model construction
because rewiring networks is not yet supported.
For this reason, changing the data input source means
model weights must be saved and the model rebuilt
from scratch to connect the new input data.
validation cannot currently be performed as training
progresses, and must be performed after training completes.
This example demonstrates how to train with input
tensors, save the model weights, and then evaluate the
model using the numpy based Keras API.
Gets to ~99.1% test accuracy after 5 epochs
(high variance from run to run: 98.9-99.3).
'''
import numpy as np
import os
import tensorflow as tf
import keras
from keras import backend as K
from keras import layers
from keras.callbacks import Callback
from tensorflow.contrib.learn.python.learn.datasets import mnist
if K.backend() != 'tensorflow':
raise RuntimeError('This example can only run with the '
'TensorFlow backend, '
'because it requires TFRecords, which '
'are not supported on other platforms.')
class EvaluateInputTensor(Callback):
""" Validate a model which does not expect external numpy data during training.
Keras does not expect external numpy data at training time, and thus cannot
accept numpy arrays for validation when all of a Keras Model's
`Input(input_tensor)` layers are provided an `input_tensor` parameter,
and the call to `Model.compile(target_tensors)` defines all `target_tensors`.
Instead, create a second model for validation which is also configured
with input tensors and add it to the `EvaluateInputTensor` callback
to perform validation.
It is recommended that this callback be the first in the list of callbacks
because it defines the validation variables required by many other callbacks,
and Callbacks are made in order.
# Arguments
model: Keras model on which to call model.evaluate().
steps: Integer or `None`.
Total number of steps (batches of samples)
before declaring the evaluation round finished.
Ignored with the default value of `None`.
"""
def __init__(self, model, steps, metrics_prefix='val', verbose=1):
# parameter of callbacks passed during initialization
# pass evalation mode directly
super(EvaluateInputTensor, self).__init__()
self.val_model = model
self.num_steps = steps
self.verbose = verbose
self.metrics_prefix = metrics_prefix
def on_epoch_end(self, epoch, logs={}):
self.val_model.set_weights(self.model.get_weights())
results = self.val_model.evaluate(None, None, steps=int(self.num_steps),
verbose=self.verbose)
metrics_str = '\n'
for result, name in zip(results, self.val_model.metrics_names):
metric_name = self.metrics_prefix + '_' + name
logs[metric_name] = result
if self.verbose > 0:
metrics_str = metrics_str + metric_name + ': ' + str(result) + ' '
if self.verbose > 0:
print(metrics_str)
def cnn_layers(x_train_input):
x = layers.Conv2D(32, (3, 3),
activation='relu', padding='valid')(x_train_input)
x = layers.MaxPooling2D(pool_size=(2, 2))(x)
x = layers.Conv2D(64, (3, 3), activation='relu')(x)
x = layers.MaxPooling2D(pool_size=(2, 2))(x)
x = layers.Flatten()(x)
x = layers.Dense(512, activation='relu')(x)
x = layers.Dropout(0.5)(x)
x_train_out = layers.Dense(num_classes,
activation='softmax',
name='x_train_out')(x)
return x_train_out
sess = K.get_session()
batch_size = 100
batch_shape = (batch_size, 28, 28, 1)
epochs = 5
num_classes = 10
# The capacity variable controls the maximum queue size
# allowed when prefetching data for training.
capacity = 10000
# min_after_dequeue is the minimum number elements in the queue
# after a dequeue, which ensures sufficient mixing of elements.
min_after_dequeue = 3000
# If `enqueue_many` is `False`, `tensors` is assumed to represent a
# single example. An input tensor with shape `[x, y, z]` will be output
# as a tensor with shape `[batch_size, x, y, z]`.
#
# If `enqueue_many` is `True`, `tensors` is assumed to represent a
# batch of examples, where the first dimension is indexed by example,
# and all members of `tensors` should have the same size in the
# first dimension. If an input tensor has shape `[*, x, y, z]`, the
# output will have shape `[batch_size, x, y, z]`.
enqueue_many = True
cache_dir = os.path.expanduser(
os.path.join('~', '.keras', 'datasets', 'MNIST-data'))
data = mnist.read_data_sets(cache_dir, validation_size=0)
x_train_batch, y_train_batch = tf.train.shuffle_batch(
tensors=[data.train.images, data.train.labels.astype(np.int32)],
batch_size=batch_size,
capacity=capacity,
min_after_dequeue=min_after_dequeue,
enqueue_many=enqueue_many,
num_threads=8)
x_train_batch = tf.cast(x_train_batch, tf.float32)
x_train_batch = tf.reshape(x_train_batch, shape=batch_shape)
y_train_batch = tf.cast(y_train_batch, tf.int32)
y_train_batch = tf.one_hot(y_train_batch, num_classes)
x_batch_shape = x_train_batch.get_shape().as_list()
y_batch_shape = y_train_batch.get_shape().as_list()
model_input = layers.Input(tensor=x_train_batch)
model_output = cnn_layers(model_input)
train_model = keras.models.Model(inputs=model_input, outputs=model_output)
# Pass the target tensor `y_train_batch` to `compile`
# via the `target_tensors` keyword argument:
train_model.compile(optimizer=keras.optimizers.RMSprop(lr=2e-3, decay=1e-5),
loss='categorical_crossentropy',
metrics=['accuracy'],
target_tensors=[y_train_batch])
train_model.summary()
x_test_batch, y_test_batch = tf.train.batch(
tensors=[data.test.images, data.test.labels.astype(np.int32)],
batch_size=batch_size,
capacity=capacity,
enqueue_many=enqueue_many,
num_threads=8)
# Create a separate test model
# to perform validation during training
x_test_batch = tf.cast(x_test_batch, tf.float32)
x_test_batch = tf.reshape(x_test_batch, shape=batch_shape)
y_test_batch = tf.cast(y_test_batch, tf.int32)
y_test_batch = tf.one_hot(y_test_batch, num_classes)
x_test_batch_shape = x_test_batch.get_shape().as_list()
y_test_batch_shape = y_test_batch.get_shape().as_list()
test_model_input = layers.Input(tensor=x_test_batch)
test_model_output = cnn_layers(test_model_input)
test_model = keras.models.Model(inputs=test_model_input, outputs=test_model_output)
# Pass the target tensor `y_test_batch` to `compile`
# via the `target_tensors` keyword argument:
test_model.compile(optimizer=keras.optimizers.RMSprop(lr=2e-3, decay=1e-5),
loss='categorical_crossentropy',
metrics=['accuracy'],
target_tensors=[y_test_batch])
# Fit the model using data from the TFRecord data tensors.
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess, coord)
train_model.fit(epochs=epochs,
steps_per_epoch=int(np.ceil(data.train.num_examples / float(batch_size))),
callbacks=[EvaluateInputTensor(test_model, steps=100)])
# Save the model weights.
train_model.save_weights('saved_wt.h5')
# Clean up the TF session.
coord.request_stop()
coord.join(threads)
K.clear_session()
# Second Session to test loading trained model without tensors
x_test = np.reshape(data.test.images, (data.test.images.shape[0], 28, 28, 1))
y_test = data.test.labels
x_test_inp = layers.Input(shape=(x_test.shape[1:]))
test_out = cnn_layers(x_test_inp)
test_model = keras.models.Model(inputs=x_test_inp, outputs=test_out)
test_model.load_weights('saved_wt.h5')
test_model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
test_model.summary()
loss, acc = test_model.evaluate(x_test,
keras.utils.to_categorical(y_test),
batch_size=batch_size)
print('\nTest accuracy: {0}'.format(acc))