forked from Chaphlagical/Deblur-GS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrender.py
132 lines (115 loc) · 5.15 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import torch
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state, visualize_depth
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
from utils.loss_utils import l1_loss
from utils.pose_utils import Pose, Lie
from utils.image_utils import psnr
from lpipsPyTorch import lpips
from utils.loss_utils import ssim
import sys
def render_with_optim_cam(view, gaussians, pipeline, background):
gt_image = view.test_image.cuda()
pose = torch.nn.Parameter(
(torch.zeros_like(view.gaussian_trans)).cuda().requires_grad_(True))
optimizer = torch.optim.Adam([{'params': [pose],
'lr': 1e-3, "name": "camera pose refine"}])
for iter in range(1400):
# view.pose = Pose().compose([Lie().se3_to_SE3(pose), view.pose_gt])
view.gaussian_trans = pose
image = render(view, gaussians, pipeline, background)["render"]
loss = l1_loss(image, gt_image)
loss.backward()
optimizer.step()
optimizer.zero_grad(set_to_none=True)
print(
f"{iter} loss={loss:03f}", end='\r')
view.gaussian_trans = pose
# view.pose = Pose().compose(Lie().se3_to_SE3(pose), view.pose_gt)
result = render(view, gaussians, pipeline, background)
rgb = result["render"]
depth = result["depth"]
print(f"\n")
print(f"psnr={psnr(rgb, gt_image).mean().double()}")
print(f"ssim={ssim(rgb, gt_image).mean().double()}")
print(f"lpips={lpips(rgb, gt_image).mean().double()}")
return rgb, visualize_depth(depth)
def render_set(model_path, name, iteration, views, gaussians, pipeline, background, optim_pose):
render_path = os.path.join(
model_path, name, "ours_{}".format(iteration), "renders")
gts_path = os.path.join(
model_path, name, "ours_{}".format(iteration), "gt")
refs_path = os.path.join(
model_path, name, "ours_{}".format(iteration), "ref")
depth_path = os.path.join(
model_path, name, "ours_{}".format(iteration), "depth")
makedirs(render_path, exist_ok=True)
makedirs(gts_path, exist_ok=True)
makedirs(refs_path, exist_ok=True)
makedirs(depth_path, exist_ok=True)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
if optim_pose:
result = render(view, gaussians, pipeline, background)
rgb = result["render"]
depth = result["depth"]
else:
rgb, depth = render_with_optim_cam(
view, gaussians, pipeline, background)
ref = view.original_image[0:3, :, :]
gt = view.test_image[0:3, :, :]
torchvision.utils.save_image(rgb, os.path.join(
render_path, '{0:05d}'.format(idx) + ".png"))
torchvision.utils.save_image(ref, os.path.join(
refs_path, '{0:05d}'.format(idx) + ".png"))
torchvision.utils.save_image(gt, os.path.join(
gts_path, '{0:05d}'.format(idx) + ".png"))
torchvision.utils.save_image(depth, os.path.join(
depth_path, '{0:05d}'.format(idx) + ".png"))
def render_sets(dataset: ModelParams, iteration: int, pipeline: PipelineParams, skip_train: bool, skip_test: bool, optim_pose: bool):
# with True:
# with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians,
load_iteration=iteration, shuffle=False)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
if not skip_train:
render_set(dataset.model_path, "train", scene.loaded_iter,
scene.getTrainCameras(), gaussians, pipeline, background, optim_pose)
if not skip_test:
render_set(dataset.model_path, "test", scene.loaded_iter,
scene.getTestCameras(), gaussians, pipeline, background, optim_pose)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument("--skip_train", action="store_true")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--optim_pose", action="store_false")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--device", type=str, default="cuda:0")
args = get_combined_args(parser)
print("Rendering " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet, args.device)
render_sets(model.extract(args), args.iteration,
pipeline.extract(args), args.skip_train, args.skip_test, args.optim_pose)