forked from CathIAS/TLIO
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscekf.py
633 lines (539 loc) · 22.5 KB
/
scekf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import numpy as np
from numba import jit
from utils.from_scipy import compute_euler_from_matrix
from utils.logging import logging
from utils.math_utils import Jr_exp, hat, mat_exp, mat_exp_vec, mat_log, rot_2vec
class State(object):
"""docstring for State"""
def __init__(self):
super(State, self).__init__()
self.s_R = None
self.s_v = None
self.s_p = None
self.s_ba = None
self.s_bg = None
self.s_timestamp_us = -1 # current state time
self.N = 0 # number of past states
self.si_Rs = [] # past states
self.si_ps = [] # past states
self.si_Rs_fej = []
self.si_ps_fej = []
self.si_timestamps_us = []
self.unobs_shift = None
def initialize_state(self, t_us, R, v, p, ba_init, bg_init):
# take the first accel data to get gravity direction
assert isinstance(t_us, int)
self.s_R = R
self.s_v = v # m/s
self.s_p = p # m
self.s_bg = bg_init # rad/s
self.s_ba = ba_init # m/s^2
self.s_timestamp_us = t_us
self.si_Rs = []
self.si_ps = []
self.si_Rs_fej = []
self.si_ps_fej = []
self.si_timestamps_us = []
self.unobs_shift = self.generate_unobservable_shift()
def reset_state(self, Rs, ps, R, v, p, ba_init, bg_init):
# take the first accel data to get gravity direction
self.s_R = R
self.s_v = v # m/s
self.s_p = p # m
self.s_bg = bg_init # rad/s
self.s_ba = ba_init # m/s^2
self.si_Rs = Rs
self.si_ps = ps
self.si_Rs_fej = Rs
self.si_ps_fej = ps
# self.unobs_shift = self.generateUnobservableShift() # TODO(dcaruso)
def __repr__(self):
return f"R:\n{self.s_R}\nv:\n{self.s_v}\np:\n{self.s_p}\nbg:\n{self.s_bg}\nba:\n{self.s_ba}"
def apply_correction(self, dX):
dX_past = dX[:-15]
dX_evol = dX[-15:]
assert dX_past.flatten().shape[0] == (
self.N * 6
), f"number of past error states {dX_past.flatten().shape[0]} does not match the number of states in the filter! {self.N * 6}"
if self.N > 0:
temp = dX_past.reshape((self.N, 6))
dps = np.expand_dims(temp[:, 3:6], axis=2) # Nx3x1
dthetas = temp[:, 0:3]
dRs = mat_exp_vec(dthetas) # Nx3x3
Rs_past = np.stack(self.si_Rs, axis=0) # Nx3x3
ps_past = np.stack(self.si_ps, axis=0) # Nx3x3
Rs_past_new = np.matmul(dRs, Rs_past)
ps_past_new = ps_past + dps
N = Rs_past.shape[0]
self.si_Rs = np.split(Rs_past_new.reshape(N * 3, 3), N, 0)
self.si_ps = np.split(ps_past_new.reshape(N * 3, 1), N, 0)
# update current state
dtheta = dX_evol[:3]
dv = dX_evol[3:6]
dp = dX_evol[6:9]
dbg = dX_evol[9:12]
dba = dX_evol[12:15]
dR = mat_exp(dtheta)
self.s_R = dR.dot(self.s_R)
self.s_v = self.s_v + dv
self.s_p = self.s_p + dp
self.s_bg = self.s_bg + dbg
self.s_ba = self.s_ba + dba
def compute_correction(self, target_state):
assert target_state.N == self.N
dX = np.zeros((self.N * 6 + 15, 1))
for i in range(len(self.si_Rs)):
dX[6 * i : 6 * i + 3] = mat_log(
target_state.si_Rs[i] @ self.si_Rs[i].inverse()
)
dX[6 * i + 3 : 6 * i + 6] = target_state.si_ps[i] - self.si_ps[i]
dX[6 * self.N :][0:3, 0] = mat_log(target_state.s_R @ self.s_R.T)
dX[6 * self.N :][3:6, :] = target_state.s_v - self.s_v
dX[6 * self.N :][6:9, :] = target_state.s_p - self.s_p
dX[6 * self.N :][9:12, :] = target_state.s_bg - self.s_bg
dX[6 * self.N :][12:15, :] = target_state.s_ba - self.s_ba
return dX
def generate_unobservable_shift(self):
""" returns a dX element along unobservable directions """
assert self.N == 0
g = np.array([[0], [0], [1]])
dX = np.zeros((15, 4))
dX[0:3, [0]] = g
dX[3:6, [0]] = -hat(self.s_v) @ g
dX[6:9, [0]] = -hat(self.s_p) @ g
dX[6:9, 1:4] = np.eye(3)
return dX
@jit(nopython=True, parallel=False, cache=True)
def propagate_rvt_and_jac(R_k, v_k, p_k, b_gk, b_ak, gyr, acc, g, dt):
def hat(v):
v = v.flatten()
R = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
return R
dtheta = (gyr - b_gk) * dt
dRd = mat_exp(dtheta)
Rd = R_k @ dRd
dv_w = R_k @ (acc - b_ak) * dt
dp_w = 0.5 * dv_w * dt
gdt = g * dt
gdt22 = 0.5 * gdt * dt
vd = v_k + dv_w + gdt
pd = p_k + v_k * dt + dp_w + gdt22
A = np.eye(15)
A[3:6, 0:3] = -hat(dv_w)
A[6:9, 0:3] = -hat(dp_w)
A[6:9, 3:6] = np.eye(3) * dt
A[0:3, 9:12] = -Rd @ Jr_exp(dtheta) * dt
A[3:6, 12:15] = -R_k * dt
A[6:9, 12:15] = -0.5 * R_k * dt * dt
return Rd, vd, pd, A
def get_rotation_from_gravity(acc):
# take the first accel data to get gravity direction
ig_w = np.array([0, 0, 1.0]).reshape((3, 1))
return rot_2vec(acc, ig_w)
class ImuMSCKF:
def __init__(self, config=None):
# sanity check
expected_attribute = [
"sigma_na",
"sigma_ng",
"ita_ba",
"ita_bg",
"init_attitude_sigma",
"init_yaw_sigma",
"init_vel_sigma",
"init_pos_sigma",
"init_bg_sigma",
"init_ba_sigma",
"mahalanobis_fail_scale",
]
if not all(hasattr(config, attr) for attr in expected_attribute):
logging.warning(
"At least one filter parameter tuning will be left at its default value."
)
# constants
g_norm = getattr(config, "g_norm", 9.81)
self.g = np.array([0, 0, -g_norm]).reshape((3, 1))
# parameters
self.sigma_na = getattr(config, "sigma_na", np.sqrt(1e-3)) # accel noise m/s^2
self.sigma_ng = getattr(config, "sigma_ng", np.sqrt(1e-4)) # gyro noise rad/s
self.ita_ba = getattr(config, "ita_ba", 1e-4) # accel bias noise m/s^2/sqrt(s)
self.ita_bg = getattr(config, "ita_bg", 1e-6) # gyro bias noise rad/s/sqrt(s)
# initial uncertainty
self.init_attitude_sigma = getattr(
config, "init_attitude_sigma", 10.0 / 180.0 * np.pi
) # rad
self.init_yaw_sigma = getattr(
config, "init_yaw_sigma", 0.1 / 180.0 * np.pi
) # rad
self.init_vel_sigma = getattr(config, "init_vel_sigma", 1.0) # m/s
self.init_pos_sigma = getattr(config, "init_pos_sigma", 0.001) # m
self.init_bg_sigma = getattr(config, "init_bg_sigma", 0.0001) # rad/s
self.init_ba_sigma = getattr(config, "init_ba_sigma", 0.2) # m/s^2
# other tuning parameters
self.meascov_scale = getattr(config, "meascov_scale", 1.0)
self.mahalanobis_factor = 1
# debug config
self.use_const_cov = getattr(config, "use_const_cov", False)
if self.use_const_cov:
self.const_cov_val_x = config.const_cov_val_x
self.const_cov_val_y = config.const_cov_val_y
self.const_cov_val_z = config.const_cov_val_z
self.add_sim_meas_noise = getattr(config, "add_sim_meas_noise", False)
if self.add_sim_meas_noise:
self.sim_meas_cov_val = config.sim_meas_cov_val
self.sim_meas_cov_val_z = config.sim_meas_cov_val_z
self.mahalanobis_fail_scale = getattr(config, "mahalanobis_fail_scale", 0)
self.last_success_mahalanobis = None
self.force_mahalanobis_until = None
# state variables
self.W = None # IMU measurement noise
self.Q = None # stochastic noise (random walk)
self.R = None # measurement noise
self.Sigma = None # full state covariance
self.Sigma15 = None # evolving state covariance
self.state = State()
self.last_timestamp_reset_us = None
# IMU interpolated data online saving
self.imu_data_int = np.array([])
# flags
self.initialized = False
self.converged = False
self.first_update = True
# debug log
self.innovation = np.zeros((3, 1))
self.meas = np.zeros((3, 1))
self.pred = np.zeros((3, 1))
self.meas_sigma = np.zeros((3, 1))
self.inno_sigma = np.zeros((3, 1))
def reset_covariance(self):
var_atti = np.power(self.init_attitude_sigma, 2.0)
var_yaw = np.power(self.init_yaw_sigma, 2.0)
var_vel = np.power(self.init_vel_sigma, 2.0)
var_pos = np.power(self.init_pos_sigma, 2.0)
var_bg_init = np.power(self.init_bg_sigma, 2.0)
var_ba_init = np.power(self.init_ba_sigma, 2.0)
Cov = np.zeros((15 + 6 * self.state.N, 15 + 6 * self.state.N))
for i, _ in enumerate(self.state.si_timestamps_us):
Cov[6 * i :, 6 * i :][0:3, 0:3] = np.diag([var_atti, var_atti, var_yaw])
Cov[6 * i :, 6 * i :][3:6, 3:6] = np.diag([var_pos, var_pos, var_pos])
Cov15 = Cov[-15:, -15:] # no copy, ref
Cov15[:3, :3] = np.diag(np.array([var_atti, var_atti, var_yaw]))
Cov15[3:6, 3:6] = np.diag(np.array([var_vel, var_vel, var_vel]))
Cov15[6:9, 6:9] = np.diag(np.array([var_pos, var_pos, var_pos]))
Cov15[9:12, 9:12] = np.diag(np.array([var_bg_init, var_bg_init, var_bg_init]))
Cov15[12:15, 12:15] = np.diag(np.array([var_ba_init, var_ba_init, var_ba_init]))
self.Sigma = Cov
self.Sigma15 = Cov[-15:, -15:]
def prepare_filter(self):
# define noise covariances
var_a = np.power(self.sigma_na, 2.0)
var_g = np.power(self.sigma_ng, 2.0)
var_ba = np.power(self.ita_ba, 2.0)
var_bg = np.power(self.ita_bg, 2.0)
self.W = np.diag(np.array([var_g, var_g, var_g, var_a, var_a, var_a]))
self.Q = np.diag(np.array([var_bg, var_bg, var_bg, var_ba, var_ba, var_ba]))
# initialize state covariance
self.reset_covariance()
def initialize_state(self, t_us, R, v, p, ba_init, bg_init):
self.state.initialize_state(t_us, R, v, p, ba_init, bg_init)
self.last_timestamp_reset_us = t_us
def reset_state_and_covariance(self, Rs, ps, R, v, p, ba_init, bg_init):
assert len(Rs) == self.state.N
assert len(ps) == self.state.N
self.state.reset_state(Rs, ps, R, v, p, ba_init, bg_init)
self.reset_covariance()
self.last_timestamp_reset_us = self.state.s_timestamp_us
assert len(Rs) == self.state.N
assert len(ps) == self.state.N
assert self.Sigma.shape[0] == self.state.N * 6 + 15
assert self.Sigma.shape[1] == self.state.N * 6 + 15
def initialize_with_state(self, t_us, R, v, p, ba_init, bg_init):
assert isinstance(t_us, int)
self.prepare_filter()
self.initialized = True
self.initialize_state(t_us, R, v, p, ba_init, bg_init)
logging.info("filter initialized with full state!")
def initialize(self, acc, t_us, ba_init, bg_init):
assert isinstance(t_us, int)
self.prepare_filter()
self.initialized = True
self.initialize_state(
t_us,
get_rotation_from_gravity(acc),
np.zeros((3, 1)),
np.zeros((3, 1)),
ba_init,
bg_init,
)
logging.info("filter initialized with gravity!")
def get_past_state(self, t_us):
assert isinstance(t_us, int)
state_idx = self.state.si_timestamps_us.index(t_us)
R = self.state.si_Rs[state_idx]
p = self.state.si_ps[state_idx]
return R, p
def get_evolving_state(self):
R = self.state.s_R
v = self.state.s_v
p = self.state.s_p
bg = self.state.s_bg
ba = self.state.s_ba
return R, v, p, ba, bg
def get_covariance(self):
Sigma = self.Sigma
Sigma15 = self.Sigma15
return Sigma, Sigma15
def get_covariance_yawp(self):
return self.Sigma15[[2, 6, 7, 8], :][:, [2, 6, 7, 8]]
def get_info_along_unobservable_shift(self):
return np.diag(
self.state.unobs_shift.T
@ np.linalg.pinv(self.Sigma)
@ self.state.unobs_shift
)
def get_debug(self):
return self.innovation, self.meas, self.pred, self.meas_sigma, self.inno_sigma
def check_filter_convergence(self):
""" let us assume the filter has converged after 10 second"""
return self.state.si_timestamps_us[0] - self.last_timestamp_reset_us > int(
10 * 1e6
)
def is_mahalanobis_activated(self):
if not self.converged:
return False
if self.force_mahalanobis_until is not None:
if self.state.s_timestamp_us < self.force_mahalanobis_until:
return True
if self.last_success_mahalanobis is not None:
if self.state.s_timestamp_us > self.last_success_mahalanobis + int(
0.5 * 1e6
):
logging.warning(
"Deactivating Mahalanobis test, because failed for too long."
)
self.last_success_mahalanobis = None
self.force_mahalanobis_until = self.state.s_timestamp_us + int(1e6)
return False
return True
def propagate(self, acc, gyr, t_us, t_augmentation_us=None):
R_k, v_k, p_k, b_ak, b_gk = (
self.state.s_R,
self.state.s_v,
self.state.s_p,
self.state.s_ba,
self.state.s_bg,
)
N = self.state.N
# evolving state propagation
dt_us = t_us - self.state.s_timestamp_us
R_kp1, v_kp1, p_kp1, Akp1 = propagate_rvt_and_jac(
R_k, v_k, p_k, b_gk, b_ak, gyr, acc, self.g, dt_us * 1e-6
)
b_gkp1 = b_gk
b_akp1 = b_ak
B = np.zeros((15, 6))
B[0:3, 0:3] = -Akp1[0:3, 9:12]
B[3:6, 3:6] = -Akp1[3:6, 12:15]
B[6:9, 3:6] = -Akp1[6:9, 12:15]
# partial integration for state augmentation
if t_augmentation_us:
# past state propagation (partial integration)
dtd_us = t_augmentation_us - self.state.s_timestamp_us
Rd, vd, pd, Ad = propagate_rvt_and_jac(
R_k, v_k, p_k, b_gk, b_ak, gyr, acc, self.g, dtd_us * 1e-6
)
# propagate covariance
JA = np.zeros((6, 15))
JA[0:3, :] = Ad[0:3, :]
JA[3:6, :] = Ad[6:9, :]
A_aug = np.zeros(((15 + 6 * (N + 1)), (15 + 6 * N)))
A_aug[0 : 6 * N, 0 : 6 * N] = np.eye(6 * N)
A_aug[-15 - 6 : -15, -15:] = JA
A_aug[-15:, -15:] = Akp1
BJ = np.zeros((6, 6))
BJ[0:3, 0:3] = -Ad[0:3, 9:12]
BJ[3:6, 3:6] = -Ad[6:9, 12:15]
B_aug = np.zeros(((15 + 6), 6))
B_aug[-15 - 6 : -15, :] = BJ
B_aug[-15:, :] = B
# past state augmentation
assert Rd.shape == (3, 3), "inserted past rotation state shape incorrect"
self.state.si_Rs.append(Rd)
self.state.si_ps.append(pd)
self.state.si_Rs_fej.append(Rd)
self.state.si_ps_fej.append(pd)
self.state.si_timestamps_us.append(t_augmentation_us)
self.state.N += 1
# print("state augmented, current number of past states: %s" % self.N)
else: # aug==False
# propagate covariance
A_aug = np.eye((15 + 6 * N))
A_aug[-15:, -15:] = Akp1
B_aug = np.zeros((15, 6))
B_aug[-15:, :] = B
Sigma_kp1 = propagate_covariance(
A_aug, B_aug, dt_us * 1e-6, self.Sigma, self.W, self.Q
)
# update states and covariance variables
self.state.s_R = R_kp1
self.state.s_v = v_kp1
self.state.s_p = p_kp1
self.state.s_ba = b_akp1
self.state.s_bg = b_gkp1
self.state.s_timestamp_us = t_us
self.Sigma = Sigma_kp1
self.Sigma15 = self.Sigma[-15:, -15:]
self.state.unobs_shift = A_aug @ self.state.unobs_shift # propagate unobs shift
def update(self, meas, meas_cov, t_begin_us, t_end_us):
"""
pred: pj - pi in the world frame
pred_cov: log(sigma) of the measurements in 3D
meas_cov [3 x 3] : covariance of measurement matrix
"""
if not self.converged and self.check_filter_convergence():
logging.info("Filter is now assumed to have converged")
self.converged = True
try:
begin_idx = self.state.si_timestamps_us.index(t_begin_us)
end_idx = self.state.si_timestamps_us.index(t_end_us)
except Exception:
logging.error("timestamps not found in past states!")
import ipdb
ipdb.set_trace()
exit(1)
self.R = self.meascov_scale * meas_cov
# set constant measurement covariance
if self.use_const_cov:
val_x = self.const_cov_val_x
val_y = self.const_cov_val_y
val_z = self.const_cov_val_z
self.R = self.meascov_scale * np.diag(np.array([val_x, val_y, val_z]))
# symmetrize R
self.R = 0.5 * (self.R + self.R.T)
self.R[self.R < 1e-10] = 0
# add measurement noise (if using simulation)
if self.add_sim_meas_noise:
wp = np.random.multivariate_normal(
[0, 0, 0],
np.diag(
[
self.sim_meas_cov_val,
self.sim_meas_cov_val,
self.sim_meas_cov_val_z,
]
),
(1),
).T
meas = meas + wp
Ri = self.state.si_Rs[begin_idx]
ri_eul = compute_euler_from_matrix(Ri, "xyz", extrinsic=True) # in radians
ri_y = ri_eul[0, 1]
ri_z = ri_eul[0, 2]
Ri_z = np.array(
[
[np.cos(ri_z), -(np.sin(ri_z)), 0],
[np.sin(ri_z), np.cos(ri_z), 0],
[0, 0, 1],
]
)
pred = Ri_z.T.dot(self.state.si_ps[end_idx] - self.state.si_ps[begin_idx])
assert begin_idx < end_idx, "begin_idx is larger than end_idx!"
assert (
end_idx < self.state.N
), "end_idx is larger than the number of past states in the filter!"
H = np.zeros((3, 15 + 6 * self.state.N))
H[:, (6 * begin_idx + 3) : (6 * begin_idx + 6)] = -Ri_z.T
H[:, (6 * end_idx + 3) : (6 * end_idx + 6)] = Ri_z.T
Hz = np.array(
[
[0, 0, 0],
[0, 0, 0],
[np.cos(ri_z) * np.tan(ri_y), np.sin(ri_z) * np.tan(ri_y), 1],
]
)
H[:, (6 * begin_idx) : (6 * begin_idx + 3)] = np.linalg.multi_dot(
[Ri_z.T, hat(self.state.si_ps[end_idx] - self.state.si_ps[begin_idx]), Hz]
)
# check for singularity, if has singularity drop the update
if abs(np.cos(ri_y)) < 1e-5:
logging.warning(f"Singularity in H matrix, dropping update")
return
assert (
self.Sigma.shape[0] == H.shape[1]
), "state covariance and matrix H does not match shape!"
if self.mahalanobis_factor > 0:
# Mahalanobis gating test
S_temp = np.linalg.multi_dot([H, self.Sigma, H.T]) + self.R
Sinv_temp = np.linalg.inv(S_temp)
normalized_square_error = np.linalg.multi_dot(
[(meas - pred).T, Sinv_temp, meas - pred]
)
# threshold from https://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm for nu=3, p =99
test_failed = normalized_square_error > self.mahalanobis_factor * 11.345
# wait for convergence before failing
if self.is_mahalanobis_activated() and test_failed:
if self.mahalanobis_fail_scale == 0:
# do not do the update
# print("Mahalanobis test failed... xi2 =", normalized_square_error)
return
else:
self.R = self.mahalanobis_fail_scale * self.R
else:
self.last_success_mahalanobis = self.state.s_timestamp_us
S = np.linalg.multi_dot([H, self.Sigma, H.T]) + self.R
Sinv = np.linalg.inv(S)
self.innovation = meas - pred
self.meas = meas
self.pred = pred
self.meas_sigma = np.sqrt(np.diag(self.R)).reshape(3, 1)
self.inno_sigma = np.sqrt(np.diag(S)).reshape(3, 1)
# obtain kalman gain
K = np.linalg.multi_dot([self.Sigma, H.T, Sinv])
delta_X = K.dot(meas - pred)
self.state.apply_correction(delta_X)
# update covariance
Sigma_up = self.Sigma - np.linalg.multi_dot([K, H, self.Sigma])
Sigma_up = 0.5 * (Sigma_up + Sigma_up.T)
self.Sigma = Sigma_up
self.Sigma15 = self.Sigma[-15:, -15:]
def marginalize(self, cut_idx):
# marginalize states prior to cut_idx
self.state.si_Rs = self.state.si_Rs[cut_idx + 1 :]
self.state.si_ps = self.state.si_ps[cut_idx + 1 :]
self.state.si_Rs_fej = self.state.si_Rs_fej[cut_idx + 1 :]
self.state.si_ps_fej = self.state.si_ps_fej[cut_idx + 1 :]
self.state.si_timestamps_us = self.state.si_timestamps_us[cut_idx + 1 :]
self.state.unobs_shift = self.state.unobs_shift[6 * (cut_idx + 1) :, :]
self.Sigma = self.Sigma[6 * (cut_idx + 1) :, 6 * (cut_idx + 1) :]
self.state.N = self.state.N - (cut_idx + 1)
@jit(nopython=True, parallel=False, cache=True)
def propagate_covariance(A_aug, B_aug, dt, Sigma, W, Q):
"""
:param A_aug:
:param B_aug: [15 x 6] or [15+6 x 6]
:return:
"""
dim_new_state = A_aug.shape[0] - A_aug.shape[1] # either 0 or 6
assert B_aug.shape[0] == 15 + dim_new_state
A = A_aug[-15 - dim_new_state :, -15:]
AT = A_aug[-15 - dim_new_state :, -15:].T
ret = np.zeros((A_aug.shape[0], A_aug.shape[0]))
ret[: -15 - dim_new_state, : -15 - dim_new_state] = Sigma[
:-15, :-15
] # copy top-left block
ret[: -15 - dim_new_state, -15 - dim_new_state :] = (
Sigma[:-15, -15:] @ AT
) # top-right corner
ret[-15 - dim_new_state :, : -15 - dim_new_state] = (
A @ Sigma[-15:, :-15]
) # bottom-left corner
ret[-15 - dim_new_state :, -15 - dim_new_state :] = (
A @ Sigma[-15:, -15:] @ AT
) # bottom-right corner
# add noise from input
ret[-15 - dim_new_state :, -15 - dim_new_state :] += (
B_aug @ W @ B_aug.T
) # only non zero on last block
# add noise from bias model
ret[-6:, -6:] += dt * Q
return ret