pip install ultralytics
Development
git clone https://github.com/ultralytics/ultralytics
cd ultralytics
pip install -e .
To simply use the latest Ultralytics YOLO models
yolo task=detect mode=train model=yolov8n.yaml args=...
classify predict yolov8n-cls.yaml args=...
segment val yolov8n-seg.yaml args=...
export yolov8n.pt format=onnx
To use pythonic interface of Ultralytics YOLO model
from ultralytics import YOLO
model = YOLO("yolov8n.yaml") # create a new model from scratch
model = YOLO(
"yolov8n.pt"
) # load a pretrained model (recommended for best training results)
results = model.train(data="coco128.yaml", epochs=100, imgsz=640)
results = model.val()
results = model.predict(source="bus.jpg")
success = model.export(format="onnx")
Model | size (pixels) |
mAPval 50-95 |
Speed CPU (ms) |
Speed T4 GPU (ms) |
params (M) |
FLOPs (B) |
---|---|---|---|---|---|---|
YOLOv5n | 640 | 28.0 | - | - | 1.9 | 4.5 |
YOLOv6n | 640 | 35.9 | - | - | 4.3 | 11.1 |
YOLOv8n | 640 | 37.3 | - | - | 3.2 | 8.9 |
YOLOv5s | 640 | 37.4 | - | - | 7.2 | 16.5 |
YOLOv6s | 640 | 43.5 | - | - | 17.2 | 44.2 |
YOLOv8s | 640 | 44.9 | - | - | 11.2 | 28.8 |
YOLOv5m | 640 | 45.4 | - | - | 21.2 | 49.0 |
YOLOv6m | 640 | 49.5 | - | - | 34.3 | 82.2 |
YOLOv8m | 640 | 50.2 | - | - | 25.9 | 79.3 |
YOLOv5l | 640 | 49.0 | - | - | 46.5 | 109.1 |
YOLOv6l | 640 | 52.5 | - | - | 58.5 | 144.0 |
YOLOv7 | 640 | 51.2 | - | - | 36.9 | 104.7 |
YOLOv8l | 640 | 52.9 | - | - | 43.7 | 165.7 |
YOLOv5x | 640 | 50.7 | - | - | 86.7 | 205.7 |
YOLOv7-X | 640 | 52.9 | - | - | 71.3 | 189.9 |
YOLOv8x | 640 | 53.9 | - | - | 68.2 | 258.5 |
YOLOv5x6 | 1280 | 55.0 | - | - | 140.7 | 839.2 |
YOLOv7-E6E | 1280 | 56.8 | - | - | 151.7 | 843.2 |
YOLOv8x6 +TTA |
1280 | - - |
- - |
- - |
97.4 | 1047.2 - |
If you're looking to modify YOLO for R&D or to build on top of it, refer to Using Trainer Guide on our docs.