forked from jolivetr/csi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
faultpostproc.py
870 lines (698 loc) · 28.8 KB
/
faultpostproc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
'''
A class the allows to compute various things using a fault object.
Written by R. Jolivet, Z. Duputel and B. Riel, April 2013
'''
import numpy as np
import pyproj as pp
import copy
import matplotlib.pyplot as plt
import sys
import os
# Personals
from .SourceInv import SourceInv
class faultpostproc(SourceInv):
'''
A class that allows to compute various things from a fault object.
Args:
* name : Name of the InSAR dataset.
* fault : Fault object
Kwargs:
* Mu : Shear modulus. Default is 24e9 GPa, because it is the PREM value for the upper 15km. Can be a scalar or a list/array of len=len(fault.patch)
* samplesh5 : file name of h5 file containing samples
* utmzone : UTM zone (optional, default=None)
* lon0 : Longitude of the center of the UTM zone
* lat0 : Latitude of the center of the UTM zone
* ellps : ellipsoid (optional, default='WGS84')
* verbose : Speak to me (default=True)
'''
def __init__(self, name, fault, Mu=24e9, samplesh5=None, utmzone=None, ellps='WGS84', lon0=None, lat0=None, verbose=True):
# Base class init
super(faultpostproc,self).__init__(name,
utmzone = utmzone,
ellps = ellps,
lon0 = lon0, lat0 = lat0)
# Initialize the data set
self.name = name
self.fault = copy.deepcopy(fault) # we don't want to modify fault slip
self.patchDepths = None
self.MTs = None
# Determine number of patches along-strike and along-dip
self.numPatches = len(self.fault.patch)
if self.fault.numz is not None:
self.numDepthPatches = self.fault.numz
self.numStrikePatches = self.numPatches / self.numDepthPatches
# Assign Mu to each patch
if len(np.array(Mu).flatten())==1:
self.Mu = Mu * np.ones((self.numPatches,))
else:
assert len(Mu)==self.numPatches, 'length of Mu must be 1 or numPatch'
self.Mu = np.array(Mu)
# Display
if verbose:
print ("---------------------------------")
print ("---------------------------------")
print ("Initialize Post Processing object {} on fault {}".format(self.name, fault.name))
self.verbose = verbose
# Check to see if we're reading in an h5 file for posterior samples
self.samplesh5 = samplesh5
# All done
return
def h5_init(self, decim=1,indss=None,indds=None):
'''
If the attribute self.samplesh5 is not None, we open the h5 file specified by
self.samplesh5 and copy the slip values to self.fault.slip (hopefully without loading
into memory).
Kwargs:
* decim : decimation factor for skipping samples
* indss : tuples (size (2,)) containing desired indices of strike slip in h5File
* indds : tuples (size (2,)) containing desired indices of dip slip in h5File
Returns:
* None
'''
if self.samplesh5 is None:
return
else:
try:
import h5py
except ImportError:
print('Cannot import h5py. Computing scalar moments only')
return
self.hfid = h5py.File(self.samplesh5, 'r')
samples = self.hfid['Sample Set']
if indss is None or indds is None:
nsamples = np.arange(0, samples.shape[0], decim).size
self.fault.slip = np.zeros((self.numPatches,3,nsamples))
self.fault.slip[:,0,:] = samples[::decim,:self.numPatches].T
self.fault.slip[:,1,:] = samples[::decim,self.numPatches:2*self.numPatches].T
else:
assert indss[1]-indss[0] == self.numPatches, 'indss[1] - indss[0] different from number of patches'
assert indss[1]-indss[0] == self.numPatches, 'indds[1] - indds[0] different from number of patches'
nsamples = np.arange(0, samples.shape[0], decim).size
self.fault.slip = np.zeros((self.numPatches,3,nsamples))
self.fault.slip[:,0,:] = samples[::decim,indss[0]:indss[1]].T
self.fault.slip[:,1,:] = samples[::decim,indds[0]:indds[1]].T
return
def h5_finalize(self):
'''
Close the (potentially) open h5 file.
Returns:
* None
'''
if hasattr(self, 'hfid'):
self.hfid.close()
return
def lonlat2xy(self, lon, lat):
'''
Uses the transformation in self to convert lon/lat vector to x/y utm.
Args:
* lon : Longitude array.
* lat : Latitude array.
Returns:
* None
'''
x, y = self.putm(lon,lat)
x /= 1000.
y /= 1000.
return x, y
def xy2lonlat(self, x, y):
'''
Uses the transformation in self to convert x.y vectors to lon/lat.
Args:
* x : Xarray
* y : Yarray
Returns:
* lon, lat : 2 float arrays
'''
lon, lat = self.putm(x*1000., y*1000., inverse=True)
return lon, lat
def patchNormal(self, p):
'''
Returns the Normal to a patch.
Args:
* p : Index of the desired patch.
Returns:
* unit normal vector
'''
if self.fault.patchType == 'triangle':
normal = self.fault.getpatchgeometry(p, retNormal=True)[-1]
return normal
elif self.fault.patchType == 'rectangle':
# Get the geometry of the patch
x, y, z, width, length, strike, dip = self.fault.getpatchgeometry(p, center=True)
# Normal
n1 = -1.0*np.sin(dip)*np.sin(strike)
n2 = np.sin(dip)*np.cos(strike)
n3 = -1.0*np.cos(dip)
N = np.sqrt(n1**2+ n2**2 + n3**2)
# All done
return np.array([n1/N, n2/N, n3/N])
else:
assert False, 'unsupported patch type'
def slipVector(self, p):
'''
Returns the slip vector in the cartesian space for the patch p. We do not deal with
the opening component. The fault slip may be a 3D array for multiple samples of slip.
Args:
* p : Index of the desired patch.
'''
# Get the geometry of the patch
x, y, z, width, length, strike, dip = self.fault.getpatchgeometry(p, center=True)
# Get the slip
strikeslip, dipslip, tensile = self.fault.slip[p,:,...]
slip = np.sqrt(strikeslip**2 + dipslip**2)
# Get the rake
rake = np.arctan2(dipslip, strikeslip)
# Vectors
ux = slip*(np.cos(rake)*np.cos(strike) + np.cos(dip)*np.sin(rake)*np.sin(strike))
uy = slip*(np.cos(rake)*np.sin(strike) - np.cos(dip)*np.sin(rake)*np.cos(strike))
uz = -1.0*slip*np.sin(rake)*np.sin(dip)
# All done
if isinstance(ux, np.ndarray):
outArr = np.zeros((3,1,ux.size))
outArr[0,0,:] = ux
outArr[1,0,:] = uy
outArr[2,0,:] = uz
return outArr
else:
return np.array([[ux], [uy], [uz]])
def computePatchMoment(self, p) :
'''
Computes the Moment tensor for one patch.
Args:
* p : patch index
'''
# Get the normal
n = self.patchNormal(p).reshape((3,1))
# Get the slip vector
u = self.slipVector(p)
# Compute the moment density
if u.ndim == 2:
mt = self.Mu[p] * (np.dot(u, n.T) + np.dot(n, u.T))
elif u.ndim == 3:
# Careful about tiling - result is already transposed
nT = np.tile(n, (1,1,u.shape[2]))
n = np.transpose(nT, (1,0,2))
uT = np.transpose(u, (1,0,2))
# Tricky 3D multiplication
mt = self.Mu[p] * ((u[:,:,None]*nT).sum(axis=1) + (n[:,:,None]*uT).sum(axis=1))
# Multiply by the area
mt *= self.fault.area[p]*1000000.
# All done
return mt
def computeMoments(self):
'''
Computes the moment tensor for each patch.
Result is stored in self.Moments
'''
# Create the list
Moments = []
# Iterate
for p in range(len(self.fault.patch)):
Moments.append(self.computePatchMoment(p))
# Save
self.Moments = Moments
# All done
return
def computeMomentTensor(self):
'''
Computes the full seismic (0-order) moment tensor from the slip distribution.
'''
# Compute the area of each patch
if not hasattr(self.fault, 'area'):
self.fault.computeArea()
# Initialize an empty moment
M = 0.0
# Compute the tensor for each patch
self.MTs = []
for p in range(len(self.fault.patch)):
# Compute the moment of one patch
mt = self.computePatchMoment(p)
self.MTs.append(mt)
# Add it up to the full tensor
M += mt
# Check if symmetric
self.checkSymmetric(M)
# Store it (Aki convention)
self.Maki = M
# Convert it to Harvard
self.Aki2Harvard()
# All done
return
def computeScalarMoment(self):
'''
Computes the scalar seismic moment.
'''
# check
assert hasattr(self, 'Maki'), 'Compute the Moment Tensor first'
# Get the moment tensor
M = self.Maki
# get the norm
Mo = np.sqrt(0.5 * np.sum(M**2, axis=(0,1)))
# Store it
self.Mo = Mo
# All done
return Mo
def computeMagnitude(self, plotHist=None, outputSamp=None):
'''
Computes the moment magnitude.
'''
# check
if not hasattr(self, 'Mo'):
self.computeScalarMoment()
# Mw
Mw = 2./3.*(np.log10(self.Mo) - 9.1)
# Store
self.Mw = Mw
# Plot histogram of magnitudes
if plotHist is not None:
assert isinstance(Mw, np.ndarray), 'cannot make histogram with one value'
fig = plt.figure(figsize=(14,8))
ax = fig.add_subplot(111)
ax.hist(Mw, bins=100)
ax.grid(True)
ax.set_xlabel('Moment magnitude', fontsize=18)
ax.set_ylabel('Normalized count', fontsize=18)
ax.tick_params(labelsize=18)
fig.savefig(os.path.join(plotHist, 'momentMagHist.pdf'))
fig.clf()
# Write out the samples
if outputSamp is not None:
with open(os.path.join(outputSamp, 'momentMagSamples.dat'), 'w') as ofid:
self.Mw.tofile(ofid)
# All done
return Mw
def computePotencies(self):
'''
Computes the potencies for all the patches.
Result is stored in self.Potencies
'''
# Compute the patch moments
self.computeMoments()
# calculate the potencies
Potencies = [np.sqrt(0.5*np.sum(M**2, axis=(0,1)))/mu for M,mu in zip(self.Moments,self.Mu)]
# Save
self.Potencies = Potencies
# All done
return
def Aki2Harvard(self):
'''
Transform the patch from the Aki convention to the Harvard convention.
'''
# Get Maki
Maki = self.Maki
# Transform
M = self._aki2harvard(Maki)
# Store it
self.Mharvard = M
# All done
return
def _aki2harvard(self, Min):
'''
Transform the moment from the Aki convention to the Harvard convention.
'''
# Create new tensor
M = np.zeros_like(Min)
# Shuffle things around following Aki & Richard, Second edition, pp 113
M[0,0,...] = Min[2,2,...]
M[1,0,...] = M[0,1,...] = Min[0,2,...]
M[2,0,...] = M[0,2,...] = -1.0*Min[1,2,...]
M[1,1,...] = Min[0,0,...]
M[2,1,...] = M[1,2,...] = -1.0*Min[1,0,...]
M[2,2,...] = Min[1,1,...]
# All done
return M
def computeCentroidLonLatDepth(self, plotOutput=None, xyzOutput=None):
'''
Computes the equivalent centroid location.
Take from Theoretical Global Seismology, Dahlen & Tromp. Chapter 5. Section 4. pp. 169
'''
# Check
assert hasattr(self, 'Mharvard'), 'Compute the Moment tensor first'
# Get the scalar moment
Mo = self.computeScalarMoment()
# Get the total Moment
M = self.Maki
# initialize centroid loc.
xc, yc, zc = 0.0, 0.0, 0.0
# Loop on the patches
for p in range(self.numPatches):
# Get patch info
x, y, z, width, length, strike, dip = self.fault.getpatchgeometry(p, center=True)
# Get the moment tensor
dS = self.computePatchMoment(p)
# Compute the normalized scalar moment density
m = 0.5 / (Mo**2) * np.sum(M * dS, axis=(0,1))
# Add it up to the centroid location
xc += m*x
yc += m*y
zc += m*z
# Store the x, y, z locations
self.centroid = [xc, yc, zc]
# Convert to lon lat
lonc, latc = self.putm(xc*1000., yc*1000., inverse=True)
self.centroidll = [lonc, latc, zc]
# Plot scatter
if plotOutput is not None:
assert isinstance(xc, np.ndarray), 'cannot make scatter plots with one value'
fig = plt.figure(figsize=(14,8))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
for ax,datPair,ylabel in [(ax1,(xc,yc),'Northing'), (ax2,(xc,zc),'Depth (km)')]:
ax.plot(datPair[0], datPair[1], '.b', alpha=0.7)
ax.set_ylabel(ylabel, fontsize=18)
ax.set_xlabel('Easting', fontsize=18)
ax.tick_params(labelsize=18)
ax.grid(True)
ax1.plot(self.fault.xf, self.fault.yf, '-r', linewidth=3)
ax2.set_ylim(ax2.get_ylim()[::-1])
fig.savefig(os.path.join(plotOutput, 'centroidDists.png'), dpi=400,
bbox_inches='tight')
# Write points out
if xyzOutput is not None:
fid = open(os.path.join(xyzOutput, 'centroids.xyz'), 'w')
for lon,lat,z in zip(*self.centroidll):
fid.write('%15.9f%15.9f%12.6f\n' % (lon, lat, z))
fid.close()
return lonc, latc, zc
def checkSymmetric(self, M):
'''
Check if a matrix is symmetric.
'''
# Check
if M.ndim == 2:
MT = M.T
else:
MT = np.transpose(M, (1,0,2))
assert (M == MT).all(), 'Matrix is not symmetric'
# all done
return
def computeBetaMagnitude(self):
'''
Computes the magnitude with a simple approximation.
'''
# Initialize moment
Mo = 0.0
# Loop on patches
for p in range(len(self.fault.patch)):
# Get area
S = self.fault.area[p]*1000000.
# Get slip
strikeslip, dipslip, tensile = self.fault.slip[p,:,...]
# Add to moment
Mo += self.Mu[p] * S * np.sqrt(strikeslip**2 + dipslip**2)
# Compute magnitude
Mw = 2./3.*(np.log10(Mo) - 9.1)
# All done
return Mo, Mw
def computeMomentAngularDifference(self, Mout, form='harvard'):
'''
Computes the difference in angle between the moment Mout and the moment.
Mout: full moment in harvard convention.
'''
# import stuff
from numpy.linalg import eigh
# Get Mout in the righ tconvention
if form is 'aki':
Mout = self._aki2harvard(Mout)
# Calculate the Eigenvectors for Mout
V,S = eigh(Mout)
inds = np.argsort(V)
S = S[:,inds]
S[:,2] = np.cross(S[:,0],S[:,1])
V1 = copy.deepcopy(S)
# Angles
angles = []
# Loop on the number of Mo
for i in range(self.Mharvard.shape[2]):
# Calculate the Eigenvectors
V,S = eigh(self.Mharvard[:,:,i])
inds = np.argsort(V)
S = S[:,inds]
S[:,2] = np.cross(S[:,0],S[:,1])
V2 = copy.deepcopy(S)
# Calculate theta
th = np.arccos((np.trace(np.dot(V1,V2.transpose()))-1.)/2.)
# find the good value
for j in range(3):
k = (j+1)%3
V3 = copy.deepcopy(V2)
V3[:,j] = -V3[:,j]
V3[:,k] = -V3[:,k]
x = np.arccos((np.trace(np.dot(V1,V3.transpose()))-1.)/2.)
if x < th:
th = x
angles.append(th*180./np.pi)
# All done
return angles
def integratedPotencyAlongProfile(self, numXBins=100, outputSamp=None):
'''
Computes the cumulative potency as a function of distance to the profile origin.
If the potencies were computed with multiple samples (in case of Bayesian exploration), we form histograms
of potency vs. distance. Otherwise, we just compute a distance profile.
kwargs:
numXBins number of bins to group patches along the profile
'''
assert False, 'Not implemented for this kind of fault'
return
def integratedPotencyWithDepth(self, plotOutput=None, numDepthBins=5, outputSamp=None):
'''
Computes the cumulative moment with depth by summing the moment per row of
patches. If the moments were computed with mutiple samples, we form histograms of
potency vs. depth. Otherwise, we just compute a depth profile.
kwargs:
plotOutput output directory for figures
numDepthBins number of bins to group patch depths
'''
# Collect all patch depths
patchDepths = np.empty((self.numPatches,))
for pIndex in range(self.numPatches):
patchDepths[pIndex] = self.fault.getpatchgeometry(pIndex, center=False)[2]
# Determine depth bins for grouping
zmin, zmax = patchDepths.min(), patchDepths.max()
zbins = np.linspace(zmin, zmax, numDepthBins+1)
binDepths = 0.5 * (zbins[1:] + zbins[:-1])
dz = abs(zbins[1] - zbins[0])
# Loop over depth bins
potencyDict = {}; scalarPotencyList = []; meanLogPotency = []
for i in range(numDepthBins):
# Get the patch indices that fall in this bin
zstart, zend = zbins[i], zbins[i+1]
ind = patchDepths >= zstart
ind *= patchDepths <= zend
ind = ind.nonzero()[0]
print(ind.size)
# Sum the total moment for the depth bin
M = 0.0
for patchIndex in ind:
M += self.computePatchMoment(int(patchIndex)) / self.Mu[patchIndex]
# Convert to scalar potency
potency = np.sqrt(0.5 * np.sum(M**2, axis=(0,1)))
logPotency = np.log10(potency)
meanLogPotency.append(np.log10(np.mean(potency)))
# Create and store histogram for current bin
if self.samplesh5 is not None:
n, bins = np.histogram(logPotency, bins=100, density=True)
binCenters = 0.5 * (bins[1:] + bins[:-1])
zbindict = {}
zbindict['count'] = n
zbindict['bins'] = binCenters
key = 'depthBin_%03d' % (i)
potencyDict[key] = zbindict
else:
scalarPotencyList.append(potency)
if plotOutput is not None:
if self.samplesh5 is None:
fig = plt.figure(figsize=(12,8))
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
scalarPotency = np.array(scalarPotencyList)
logPotency = np.log10(scalarPotency)
sumLogPotency = np.log10(np.cumsum(scalarPotencyList))
for ax,dat in [(ax1, logPotency), (ax2, sumLogPotency)]:
ax.plot(dat, binDepths, '-o')
ax.grid(True)
ax.set_xlabel('Log Potency', fontsize=16)
ax.set_ylabel('Depth (km)', fontsize=16)
ax.tick_params(labelsize=16)
ax.set_ylim(ax.get_ylim()[::-1])
ax1.set_title('Potency vs. depth', fontsize=18)
ax2.set_title('Integrated Potency vs. depth', fontsize=18)
fig.savefig(os.path.join(plotOutput, 'depthPotencyDistribution.pdf'))
else:
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111)
for depthIndex in range(numDepthBins):
# Get the histogram for the current depth
key = 'depthBin_%03d' % (depthIndex)
zbindict = potencyDict[key]
nref, bins = zbindict['count'], zbindict['bins']
n = nref.copy()
# Shift the histogram to the current depth and scale it
n /= n.max() / (0.5 * dz)
n -= binDepths[depthIndex]
# Plot normalized histogram
ax.plot(bins, -n)
# Also draw the means
ax.plot(meanLogPotency, binDepths, '-ob', linewidth=2)
ax.set_ylim(ax.get_ylim()[::-1])
ax.set_xlabel('Log potency', fontsize=18)
ax.set_ylabel('Depth (km)', fontsize=18)
ax.tick_params(labelsize=18)
ax.grid(True)
fig.savefig(os.path.join(plotOutput, 'depthPotencyDistribution.pdf'))
# Save histogram for every depth bin
if outputSamp is not None:
assert self.samplesh5 is not None, 'cannot output only one sample'
import h5py
outfid = h5py.File(os.path.join(outputSamp, 'depthPotencyHistograms.h5'), 'w')
for depthIndex in range(numDepthBins):
# Get the histogram for the current depth
key = 'depthBin_%03d' % (depthIndex)
zbindict = potencyDict[key]
n, bins = zbindict['count'], zbindict['bins']
# Save to h5
depthSamp = outfid.create_dataset('depth_%fkm' % (binDepths[depthIndex]),
(n.size,3), 'd')
depthSamp[:,0] = bins
depthSamp[:,1] = n
depthSamp[:,2] = meanLogPotency[depthIndex]
outfid.close()
return
def write2GCMT(self, form='full', filename=None):
'''
Writes in GCMT style
Args:
* form : format is either 'full' to match with Zacharie binary
or 'line' to match with the option -Sm in GMT
Example of 'full':
PDE 2006 1 1 7 11 57.00 31.3900 140.1300 10.0 5.3 5.0 SOUTHEAST OF HONSHU, JAP
event name: 200601010711A
time shift: 10.4000
half duration: 1.5000
latitude: 31.5100
longitude: 140.0700
depth: 12.0000
Mrr: 3.090000e+24
Mtt: -2.110000e+24
Mpp: -9.740000e+23
Mrt: -6.670000e+23
Mrp: -5.540000e+23
Mtp: -5.260000e+23
'''
# Check
assert hasattr(self,'Mharvard'), 'Compute the Moment tensor first'
# Get the moment
M = self.Mharvard
# Get lon lat
lon, lat, depth = self.computeCentroidLonLatDepth()
# Check filename
if filename is not None:
fout = open(filename, 'w')
else:
fout = sys.stdout
if form is 'full':
# Write the BS header
fout.write(' PDE 1999 1 1 9 99 99.00 99.9900 99.9900 99.0 5.3 5.0 BULLSHIT \n')
fout.write('event name: thebigbaoum \n')
fout.write('time shift: 99.9999 \n')
fout.write('half duration: 99.9999 \n')
fout.write('latitude: {} \n'.format(lat))
fout.write('longitude: {} \n'.format(lon))
fout.write('depth: {} \n'.format(depth))
fout.write('Mrr: {:7e} \n'.format(M[0,0]*1e7))
fout.write('Mtt: {:7e} \n'.format(M[1,1]*1e7))
fout.write('Mpp: {:7e} \n'.format(M[2,2]*1e7))
fout.write('Mrt: {:7e} \n'.format(M[0,1]*1e7))
fout.write('Mrp: {:7e} \n'.format(M[0,2]*1e7))
fout.write('Mtp: {:7e} \n'.format(M[1,2]*1e7))
elif form is 'line':
# get the largest mantissa
mantissa = 0
A = [M[0,0], M[1,1], M[2,2], M[0,1], M[0,2], M[1,2]]
for i in range(6):
if np.abs(A[i])>0.0:
exp = int(np.log10(np.abs(A[i])))
if exp > mantissa:
mantissa = exp
mrr = (M[0,0])/10**mantissa
mtt = (M[1,1])/10**mantissa
mpp = (M[2,2])/10**mantissa
mrt = (M[0,1])/10**mantissa
mrp = (M[0,2])/10**mantissa
mtp = (M[1,2])/10**mantissa
fout.write('{} {} {} {:3f} {:3f} {:3f} {:3f} {:3f} {:3f} {:d} \n'.format(
lon, lat, depth, mrr, mtt, mpp, mrt, mrp, mtp, mantissa+7))
# Close file
if filename is not None:
fout.close()
else:
fout.flush()
# All done
return
def stressdrop(self,shapefactor=2.44,threshold=0.2,threshold_rand=False,return_Area_Mo_Slip=False):
'''
Compute threshold-dependent moment-based average stress-dip (cf., Noda et al., GJI 2013)
Args:
* shapefactor: shape factor (e.g., 2.44 for a circular crack,)
* threshold: Rupture Area = area for slip > threshold * slip_max
* threashold_rand: if ='log-normal' randomly generate threshold with mean threshold[0]
and sigma=threshold[1]
if ='uniform' randomly generate threshold between threshold[0]
and threshold[1]
if =False: compute stressdrop for a constant threshold
* return_Area_Mo_Slip: if True, also return Rupture area as well as corresponding
scalar moment and averaged slip amplitude
'''
assert hasattr(self, 'MTs'), 'Compute moment tensor first'
# Slip amplitude
if self.fault.slip.ndim == 3:
u = self.fault.slip[:,:2,:]
ndim = 3
else:
u = self.fault.slip[:,:2]
ndim = 2
slp = np.sqrt((u*u).sum(axis=1))
slp_max = slp.max(axis=0)
plt.hist(slp_max)
plt.show()
if threshold_rand=='log-normal': # Use log-normal distributed thresholds
th = scipy.random.lognormal(mean=threshold[0],sigma=threshold[1],size=slp_max.size)
elif threshold_rand=='uniform': # Use uniform distributed thresholds
th = scipy.random.uniform(low=threshold[0],high=threshold[1],size=slp_max.size)
else:
th = threshold * np.ones(slp_max.shape)
slp_th = th * slp_max
# Rupture Area and seismic moment
area = np.zeros(slp_th.shape)
Mo = np.zeros(slp_th.shape)
A = np.array(self.fault.area)
Slip = np.zeros(slp_th.shape)
for i in range(len(slp_th)):
if ndim==3:
ps = np.where(slp[:,i]>=slp_th[i])[0]
else:
ps = np.where(slp>=slp_th[i])[0]
if ps.size>0:
area[i] += A[ps].sum()*1000000.
M = 0.0
if ndim==3:
Slip[i] = slp[ps,i].mean()
for p in ps:
M += self.MTs[p][:,:,i]
else:
Slip[i] = slp[ps].mean()
for p in ps:
M += self.MTs[p][:,:]
self.checkSymmetric(M)
Mo[i] = np.sqrt(0.5 * np.sum(M**2, axis=(0,1)))
self.rupture_Mo = Mo
self.rupture_area = area
# Scalar moment
StressDrop = shapefactor * Mo/(area**1.5)
self.StressDrop = StressDrop
# All done
if return_Area_Mo_Slip:
return area,Mo,Slip,self.StressDrop
else:
return self.StressDrop
#EOF