forked from jolivetr/csi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimagedownsampling.py
1652 lines (1336 loc) · 52.3 KB
/
imagedownsampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
A class that deals with downsampling the insar data.
Authors: R. Jolivet, January 2014.
R. Grandin, April 2015
'''
# Externals
import numpy as np
import pyproj as pp
import matplotlib.pyplot as plt
import scipy.spatial.distance as distance
import matplotlib.path as path
import matplotlib as mpl
import copy
import sys
import os
import multiprocessing as mp
# Personals
from .insar import insar
from .opticorr import opticorr
from .imagecovariance import imagecovariance as imcov
from .csiutils import _split_seq
# Initialize a class for multiprocessing gradient computation
class mpgradcurv(mp.Process):
def __init__(self, downsampler, Bsize, indexes, queue):
'''
Initializes a multiprocessing class
Args:
* downsampler : instance of imagedownsampling
* Bsize : Size of blocks
* indexes : indexes of blocks
* queue : instance of mp.Queue
'''
# Save
self.downsampler = downsampler
self.Bsize = Bsize
self.indexes = indexes
self.queue = queue
# Initialize the process
super(mpgradcurv, self).__init__()
# All done
return
def run(self):
'''
Runs the gradient/curvature computation
'''
gradient = []
curvature = []
# Over each block, we average the position and the phase to have a new point
for i in self.indexes:
# If Bsize, then set to 0.
if self.Bsize[i]:
gradient.append(0.0)
curvature.append(0.0)
else:
# Get block
block = self.downsampler.blocks[i]
# Split it in 4 blocks
subBlocks = self.downsampler.cutblockinfour(block)
# Create list
xg = []; yg = []; means = []
for subblock in subBlocks:
# Create a path
p = path.Path(subblock, closed=False)
# Find those who are inside
ii = p.contains_points(self.downsampler.PIXXY)
# Check if total area is sufficient
check = self.downsampler._isItAGoodBlock(block,
np.flatnonzero(ii).shape[0])
if check:
if self.downsampler.datatype is 'insar':
vel = np.mean(self.downsampler.image.vel[ii])
means.append(vel)
elif self.datatype is 'opticorr':
east = np.mean(self.downsampler.image.east[ii])
north = np.mean(self.downsampler.image.north[ii])
means.append(np.sqrt(east**2+north**2))
xg.append(np.mean(self.downsampler.image.x[ii]))
yg.append(np.mean(self.downsampler.image.y[ii]))
means = np.array(means)
# estimate gradient
if len(xg)>=2:
A = np.zeros((len(xg),3))
A[:,0] = 1.
A[:,1] = xg
A[:,2] = yg
cffs = np.linalg.lstsq(A,means,rcond=None)
gradient.append(np.abs(np.mean(cffs[0][1:])))
curvature.append(np.std(means - np.dot(A,cffs[0])))
else:
gradient.append(0.)
curvature.append(0.)
# Save gradient
self.queue.put([gradient, curvature, self.indexes])
# All done
return
# Initialize a class for multiprocessing downsampling
class mpdownsampler(mp.Process):
def __init__(self, downsampler, blocks, blocksll, queue):
'''
Initialize the multiprocessing class.
Args:
* downsampler : instance of imagedownsampling
* blocks : list of blocks
* blocksll : list of blocks
* queue : Instance of mp.Queue
Kwargs:
* datatype : 'insar' or 'opticorr'
'''
# Save
self.downsampler = downsampler
self.blocks = blocks
self.blocksll = blocksll
self.queue = queue
# Initialize the process
super(mpdownsampler, self).__init__()
# All done
return
def run(self):
'''
Run the phase averaging.
'''
# Initialize lists
X, Y, Lon, Lat, Wgt = [], [], [], [], []
if self.downsampler.datatype is 'insar':
Vel, Err, Los = [], [], []
elif self.downsampler.datatype is 'opticorr':
East, North, Err_east, Err_north = [], [], [], []
outBlocks = []
outBlocksll = []
# Over each block, we average the position and the phase to have a new point
for block, blockll in zip(self.blocks, self.blocksll):
# Create a path
p = path.Path(block, closed=False)
# Find those who are inside
ii = p.contains_points(self.downsampler.PIXXY)
# Check if total area is sufficient
check = self.downsampler._isItAGoodBlock(block, np.flatnonzero(ii).shape[0])
# If yes
if check:
# Save block
outBlocks.append(block)
outBlocksll.append(blockll)
# Get Mean, Std, x, y, ...
wgt = len(np.flatnonzero(ii))
if self.downsampler.datatype is 'insar':
vel = np.mean(self.downsampler.image.vel[ii])
err = np.std(self.downsampler.image.vel[ii])
los0 = np.mean(self.downsampler.image.los[ii,0])
los1 = np.mean(self.downsampler.image.los[ii,1])
los2 = np.mean(self.downsampler.image.los[ii,2])
norm = np.sqrt(los0*los0+los1*los1+los2*los2)
los0 /= norm
los1 /= norm
los2 /= norm
elif self.downsampler.datatype is 'opticorr':
east = np.mean(self.downsampler.image.east[ii])
north = np.mean(self.downsampler.image.north[ii])
err_east = np.std(self.downsampler.image.east[ii])
err_north = np.std(self.downsampler.image.north[ii])
x = np.mean(self.downsampler.image.x[ii])
y = np.mean(self.downsampler.image.y[ii])
lon, lat = self.downsampler.xy2ll(x, y)
# Store that
if self.downsampler.datatype is 'insar':
Vel.append(vel)
Err.append(err)
Los.append([los0, los1, los2])
elif self.downsampler.datatype is 'opticorr':
East.append(east)
North.append(north)
Err_east.append(err_east)
Err_north.append(err_north)
X.append(x)
Y.append(y)
Lon.append(lon)
Lat.append(lat)
Wgt.append(wgt)
# Save
if self.downsampler.datatype is 'insar':
self.queue.put([X, Y, Lon, Lat, Wgt, Vel, Err, Los, outBlocks, outBlocksll])
elif self.downsampler.datatype is 'opticorr':
self.queue.put([X, Y, Lon, Lat, Wgt, East, North, Err_east, Err_north,
outBlocks, outBlocksll])
# All done
return
class imagedownsampling(object):
'''
A class to downsample images
Args:
* name : Name of the downsampler.
* image : InSAR or opticorr data set to be downsampled.
Kwargs:
* faults : List of faults.
* verbose : Talk to me
Returns:
* None
'''
def __init__(self, name, image, faults=None, verbose=True):
if verbose:
print ("---------------------------------")
print ("---------------------------------")
print ("Initialize InSAR downsampling tools {}".format(name))
self.verbose = verbose
# Set the name
self.name = name
self.datatype = image.dtype
# Set the transformation
self.utmzone = image.utmzone
self.lon0 = image.lon0
self.lat0 = image.lat0
self.putm = image.putm
self.ll2xy = image.ll2xy
self.xy2ll = image.xy2ll
# Check if the faults are in the same utm zone
self.faults = []
if faults is not None:
if type(faults) is not list:
faults = [faults]
for fault in faults:
assert (fault.utmzone==self.utmzone), 'Fault {} not in utm zone #{}'.format(fault.name, self.utmzone)
assert (fault.lon0==self.lon0), 'Fault {} does not have same origin Lon {}'.format(fault.name, self.lon0)
assert (fault.lat0==self.lat0), 'Fault {} does not have same origin Lat {}'.format(fault.name, self.lat0)
self.faults.append(fault)
# Save the image
self.image = image
# Incidence and heading need to be defined if already defined
if self.datatype is 'insar':
if hasattr(self.image, 'heading'):
self.heading = self.image.heading
if hasattr(self.image, 'incidence'):
self.incidence = self.image.incidence
# Create the initial box
xmin = np.floor(image.x.min())
xmax = np.floor(image.x.max())+1.
ymin = np.floor(image.y.min())
ymax = np.floor(image.y.max())+1.
self.xmin = xmin
self.xmax = xmax
self.ymin = ymin
self.ymax = ymax
self.box = [[xmin, ymin],
[xmin, ymax],
[xmax, ymax],
[xmax, ymin]]
lonmin = image.lon.min()
lonmax = image.lon.max()
latmin = image.lat.min()
latmax = image.lat.max()
self.lonmin = lonmin; self.latmax = latmax
self.latmin = latmin; self.lonmax = lonmax
self.boxll = [[lonmin, latmin],
[lonmin, latmax],
[lonmax, latmax],
[lonmax, latmin]]
# Get the original pixel spacing
self.spacing = distance.cdist([[image.x[0], image.y[0]]], [[image.x[i], image.y[i]] for i in range(1, image.x.shape[0])])[0]
self.spacing = self.spacing.min()
if self.verbose:
print('Effective pixel spacing: {}'.format(self.spacing))
# Deduce the original pixel area
self.pixelArea = self.spacing**2
# All done
return
def initialstate(self, startingsize, minimumsize, tolerance=0.5, plot=False, decimorig=10):
'''
Does the first cut onto the data.
Args:
* startingsize : Size of the first regular downsampling (it'll be the effective maximum size of windows)
* minimumsize : Minimum Size of the blocks.
Kwargs:
* tolerance : Between 0 and 1. If 1, all the pixels must have a value so that the box is kept. If 0, no pixels are needed... Default is 0.5
* decimorig : Decimation ofr plotting purposes only.
* plot : True/False
Returns:
* None
'''
# Set the tolerance
self.tolerance = tolerance
self.minsize = minimumsize
# Define Edges
xLeftEdges = np.arange(self.xmin-startingsize, self.xmax+startingsize, startingsize)[:-1].tolist()
yUpEdges = np.arange(self.ymin-startingsize, self.ymax+startingsize, startingsize)[1:].tolist()
# Make blocks
blocks = []
for x in xLeftEdges:
for y in yUpEdges:
block = [ [x, y],
[x+startingsize, y],
[x+startingsize, y-startingsize],
[x, y-startingsize] ]
blocks.append(block)
# Set blocks
self.setBlocks(blocks)
# Generate the sampling to test
self.downsample(plot=plot, decimorig=decimorig)
# All done
return
def setBlocks(self, blocks):
'''
Takes a list of blocks and set it in self.
Args:
* blocks : List of blocks (xy coordinates)
Returns:
* None
'''
# Save the blocks
self.blocks = blocks
# Build the list of blocks in lon, lat
blocksll = []
for block in blocks:
c1, c2, c3, c4 = block
blockll = [ self.xy2ll(c1[0], c1[1]),
self.xy2ll(c2[0], c2[1]),
self.xy2ll(c3[0], c3[1]),
self.xy2ll(c4[0], c4[1]) ]
blocksll.append(blockll)
self.blocksll = blocksll
# All done
return
def downsample(self, plot=False, decimorig=10,norm=None):
'''
From the saved list of blocks, computes the downsampled data set and the informations that come along.
Kwargs:
* plot : True/False
* decimorig : decimate a bit for plotting
* norm : colorlimits for plotting
Returns:
* None
'''
# Create the new image object
if self.datatype is 'insar':
newimage = insar('Downsampled {}'.format(self.image.name), utmzone=self.utmzone, verbose=False,
lon0=self.lon0, lat0=self.lat0)
elif self.datatype is 'opticorr':
newimage = opticorr('Downsampled {}'.format(self.image.name), utmzone=self.utmzone, verbose=False,
lon0=self.lon0, lat0=self.lat0)
# Get the blocks
blocks = self.blocks
blocksll = self.blocksll
# Create the variables
if self.datatype is 'insar':
newimage.vel = []
newimage.err = []
newimage.los = []
elif self.datatype is 'opticorr':
newimage.east = []
newimage.north = []
newimage.err_east = []
newimage.err_north = []
newimage.lon = []
newimage.lat = []
newimage.x = []
newimage.y = []
newimage.wgt = []
# Store the factor
newimage.factor = self.image.factor
# Build the previous geometry
self.PIXXY = np.vstack((self.image.x, self.image.y)).T
# Create a queue to hold the results
output = mp.Queue()
# Check how many workers
try:
nworkers = int(os.environ['OMP_NUM_THREADS'])
except:
nworkers = mp.cpu_count()
# Create the workers
seqblocks = _split_seq(blocks, nworkers)
seqblocksll = _split_seq(blocksll, nworkers)
workers = [mpdownsampler(self, seqblocks[i], seqblocksll[i], output)\
for i in range(nworkers)]
# Start
for w in range(nworkers): workers[w].start()
# Initialize blocks
blocks, blocksll = [], []
# Collect
for w in range(nworkers):
if self.datatype is 'insar':
x, y, lon, lat, wgt, vel, err, los, block, blockll = output.get()
newimage.vel.extend(vel)
newimage.err.extend(err)
newimage.los.extend(los)
elif self.datatype is 'opticorr':
x, y, lon, lat, wgt, east, north, err_east, err_north, block, blockll = output.get()
newimage.east.extend(east)
newimage.north.extend(north)
newimage.err_east.extend(err_east)
newimage.err_north.extend(err_north)
newimage.x.extend(x)
newimage.y.extend(y)
newimage.lat.extend(lat)
newimage.lon.extend(lon)
newimage.wgt.extend(wgt)
blocks.extend(block)
blocksll.extend(blockll)
# Save blocks
self.blocks = blocks
self.blocksll = blocksll
# Convert
if self.datatype is 'insar':
newimage.vel = np.array(newimage.vel)
newimage.err = np.array(newimage.err)
newimage.los = np.array(newimage.los)
elif self.datatype is 'opticorr':
newimage.east = np.array(newimage.east)
newimage.north = np.array(newimage.north)
newimage.err_east = np.array(newimage.err_east)
newimage.err_north = np.array(newimage.err_north)
newimage.x = np.array(newimage.x)
newimage.y = np.array(newimage.y)
newimage.lon = np.array(newimage.lon)
newimage.lat = np.array(newimage.lat)
newimage.wgt = np.array(newimage.wgt)
# Store newimage
self.newimage = newimage
# plot y/n
if plot:
self.plotDownsampled(decimorig=decimorig,norm=norm)
# All done
return
def downsampleFromSampler(self, sampler, plot=False, decimorig=10):
'''
From the downsampling scheme in a previous sampler, downsamples the image.
Args:
* sampler : Sampler which has a blocks instance.
Kwargs:
* plot : Plot the downsampled data (True/False)
* decimorig : Stupid decimation factor for lighter plotting.
Returns:
* None
'''
# set the downsampling scheme
self.setDownsamplingScheme(sampler)
# Downsample
self.downsample(plot=plot, decimorig=decimorig)
# All done
return
def downsampleFromRspFile(self, prefix, tolerance=0.5, plot=False, decimorig=10):
'''
From the downsampling scheme saved in a .rsp file, downsamples the image.
Args:
* prefix : Prefix of the rsp file.
Kwargs:
* tolerance : Minimum surface covered in a patch to be kept.
* plot : Plot the downsampled data (True/False)
* decimorig : Simple decimation factor of the data for lighter plotting.
Returns:
* None
'''
# Set tolerance
self.tolerance = tolerance
# Read the file
self.readDownsamplingScheme(prefix)
# Downsample
self.downsample(plot=plot, decimorig=decimorig)
# All done
return
def getblockcenter(self, block):
'''
Returns the center of a block.
Args:
* block : Block as defined in initialstate.
Returns:
* None
'''
# Get the four corners
c1, c2, c3, c4 = block
x1, y1 = c1
x2, y2 = c2
x4, y4 = c4
xc = x1 + (x2 - x1)/2.
yc = y1 + (y4 - y1)/2.
# All done
return xc, yc
def cutblockinfour(self, block):
'''
From a block, returns 4 equal blocks.
Args:
* block : block as defined in initialstate.
Returns:
* 4 lists of block corners
'''
# Get the four corners
c1, c2, c3, c4 = block
x1, y1 = c1
x2, y2 = c2
x3, y3 = c3
x4, y4 = c4
# Compute the position of the center
xc, yc = self.getblockcenter(block)
# Form the 4 blocks
b1 = [ [x1, y1],
[xc, y1],
[xc, yc],
[x1, yc] ]
b2 = [ [xc, y2],
[x2, y2],
[x2, yc],
[xc, yc] ]
b3 = [ [x4, yc],
[xc, yc],
[xc, y4],
[x4, y4] ]
b4 = [ [xc, yc],
[x3, yc],
[x3, y3],
[xc, y3] ]
# all done
return b1, b2, b3, b4
def cutblockinthree(self, block):
'''
Used to create a smoother downsampled grid. From a single block, returns three blocks. Not used for now.
T.L. Shreve, January 2018
Args:
* block : block as defined in initialstate.
Returns:
* 3 lists of block corners
'''
# Get the four corners
cs1, cs2, cs3, cs4 = block
xs1, ys1 = cs1
xs2, ys2 = cs2
xs3, ys3 = cs3
xs4, ys4 = cs4
# Compute the position of the center
xsc, ysc = self.getblockcenter(block)
#Where is the large block touching the smaller blocks? [top/bottom/left/right]
touch = top
# Form the 3 blocks (if the block is touched by smaller blocks beneath it)
if touch is 'bottom':
bs1 = [ [xs1, ys1],
[xs2, ys2],
[xs2, ysc],
[xs1, ysc] ]
bs2 = [ [xs4, ysc],
[xsc, ysc],
[xsc, ys4],
[xs4, ys4] ]
bs3 = [ [xsc, ysc],
[xs3, ysc],
[xs3, ys3],
[xsc, ys3] ]
# Form the 3 blocks (if the block is touched by smaller blocks above it)
elif touch is 'top':
bs1 = [ [xs1, ys1],
[xsc, ys1],
[xsc, ysc],
[xs1, ysc] ]
bs2 = [ [xsc, ys2],
[xs2, ys2],
[xs2, ysc],
[xsc, ysc] ]
bs3 = [ [xs3, ysc],
[xs4, ysc],
[xs4, ys4],
[xs3, ys3] ]
# Form the 3 blocks (if the block is touched by smaller blocks to the left)
elif touch is 'left':
bs1 = [ [xs1, ys1],
[xsc, ys1],
[xsc, ysc],
[xs1, ysc] ]
bs2 = [ [xsc, ys2],
[xs4, ys2],
[xsc, ys4],
[xsc, ys2] ]
bs3 = [ [xsc, ysc],
[xs3, ysc],
[xs3, ys3],
[xsc, ys3] ]
# Form the 3 blocks (if the block is touched by smaller blocks to the right)
elif touch is 'right':
bs1 = [ [xs1, ys1],
[xsc, ys1],
[xsc, ys3],
[xs3, ys3] ]
bs2 = [ [xsc, ys2],
[xs2, ys2],
[xs2, ysc],
[xsc, ysc] ]
bs3 = [ [xs4, ysc],
[xsc, ysc],
[xsc, ys4],
[xs4, ys4] ]
# all done
return bs1, bs2, bs3
def distanceBased(self, chardist=15, expodist=1, plot=False, decimorig=10,norm=None):
'''
Downsamples the dataset depending on the distance from the fault R.Grandin, April 2015
Kwargs:
* chardist : Characteristic distance of downsampling.
* expodist : Exponent of the distance-based downsampling criterion.
* plot : True/False
* decimorig : decimate for plotting
* Norm : colorlimits for plotting
Returns:
* None
'''
if self.verbose:
print ("---------------------------------")
print ("---------------------------------")
print ("Distance-based downsampling ")
# by default, try to do at least one pass
do_downsamp=True
# Iteration counter #
it=0
# Loops until done
while do_downsamp:
# If some block has to be downsampled, "do_resamp" will be set back to "True"
do_downsamp=False
# Check if block size is minimum
Bsize = self._is_minimum_size(self.blocks)
# Iteration #
it += 1
if self.verbose:
print('Iteration {}: Testing {} data samples '.format(it, len(self.blocks)))
# New list of blocks
newblocks = []
# Iterate over blocks
for j in range(len(self.blocks)):
block = self.blocks[j]
# downsample if the block is too large, given its distance to the fault
# ( except if the block already has minimum size )
if ((self.distToFault(block)-chardist)<self.blockSize(block) ** expodist) and not Bsize[j]:
b1, b2, b3, b4 = self.cutblockinfour(block)
newblocks.append(b1)
newblocks.append(b2)
newblocks.append(b3)
newblocks.append(b4)
do_downsamp=True
# otherwise, leave the block unchanged
else:
newblocks.append(block)
# Set the blocks
self.setBlocks(newblocks)
# Do the downsampling
self.downsample(plot=plot, decimorig=decimorig,norm=norm)
# All done
return
def computeGradientCurvature(self, smooth=None):
'''
Computes the gradient for all the blocks.
Kwargs:
* smooth : Smoothes the Gradient and the Curvature using a Gaussian filter. {smooth} is the kernel size (in km) of the filter.
Returns:
* None
'''
# Get the XY situation
self.PIXXY = np.vstack((self.image.x, self.image.y)).T
# Get minimum size
Bsize = self._is_minimum_size(self.blocks)
# Gradient (if we cannot compute the gradient, the value is zero, so the algo stops)
self.Gradient = np.ones(len(self.blocks,))*1e7
self.Curvature = np.ones(len(self.blocks,))*1e7
# Create a queue to hold the results
output = mp.Queue()
# Check how many workers
try:
nworkers = int(os.environ['OMP_NUM_THREADS'])
except:
nworkers = mp.cpu_count()
# Create the workers
seqindices = _split_seq(range(len(self.blocks)), nworkers)
workers = [mpgradcurv(self, Bsize, seqindices[w], output) for w in range(nworkers)]
# start the workers
for w in range(nworkers): workers[w].start()
# Collect
for w in range(nworkers):
gradient, curvature, igrad = output.get()
self.Gradient[igrad] = gradient
self.Curvature[igrad] = curvature
# Smooth?
if smooth is not None:
centers = [self.getblockcenter(block) for block in self.blocks]
Distances = distance.cdist(centers,centers)**2
gauss = np.exp(-0.5*Distances/(smooth**2))
self.Gradient = np.dot(gauss, self.Gradient)/np.sum(gauss, axis=1)
self.Curvature = np.dot(gauss, self.Curvature)/np.sum(gauss, axis=1)
# All done
return
def dataBased(self, threshold, plot=False, verboseLevel='minimum', decimorig=10, quantity='curvature', smooth=None, itmax=100):
'''
Iteratively downsamples the dataset until value compute inside each block is lower than the threshold.
Threshold is based on the gradient or curvature of the phase field inside the block.
The algorithm is based on the varres downsampler. Please check at http://earthdef.caltech.edu
Args:
* threshold : Gradient threshold
Kwargs:
* plot : True/False
* verboseLevel : Talk to me
* decimorig : decimate before plotting
* quantity : curvature or gradient
* smooth : Smooth the {quantity} spatial with a filter of kernel size of {smooth} km
* itmax : Maximum number of iterations
Returns:
* None
'''
if self.verbose:
print ("---------------------------------")
print ("---------------------------------")
print ("Downsampling Iterations")
# Creates the variable that is supposed to stop the loop
# Check = [False]*len(self.blocks)
self.Gradient = np.ones(len(self.blocks),)*(threshold+1.)
self.Curvature = np.ones(len(self.blocks),)*(threshold+1.)
do_cut = False
# counter
it = 0
# Check
if quantity is 'curvature':
testable = self.Curvature
elif quantity is 'gradient':
testable = self.Gradient
# Check if block size is minimum
Bsize = self._is_minimum_size(self.blocks)
# Loops until done
while not (testable<threshold).all() and it<itmax:
# Check
assert testable.shape[0]==len(self.blocks), 'Gradient vector has a size different than number of blocks'
# Cut if asked
if do_cut:
# New list of blocks
newblocks = []
# Iterate over blocks
for j in range(len(self.blocks)):
block = self.blocks[j]
if (testable[j]>threshold) and not Bsize[j]:
b1, b2, b3, b4 = self.cutblockinfour(block)
newblocks.append(b1)
newblocks.append(b2)
newblocks.append(b3)
newblocks.append(b4)
else:
newblocks.append(block)
# Set the blocks
self.setBlocks(newblocks)
# Do the downsampling
self.downsample(plot=False, decimorig=decimorig)
else:
do_cut = True
# Iteration #
it += 1
if self.verbose:
print('Iteration {}: Testing {} data samples '.format(it, len(self.blocks)))
# Compute resolution
self.computeGradientCurvature(smooth=smooth)
if quantity is 'curvature':
testable = self.Curvature
elif quantity is 'gradient':
testable = self.Gradient
# initialize
Bsize = self._is_minimum_size(self.blocks)
if self.verbose and verboseLevel is not 'minimum':
sys.stdout.write(' ===> Resolution from {} to {}, Mean = {} +- {} \n'.format(testable.min(),
testable.max(), testable.mean(), testable.std()))
sys.stdout.flush()
# Plot at the end of that iteration
if plot:
self.plotDownsampled(decimorig=decimorig)
# All done
return
def resolutionBased(self, threshold, damping, slipdirection='s', plot=False, verboseLevel='minimum', decimorig=10, vertical=False):
'''
Iteratively downsamples the dataset until value compute inside each block is lower than the threshold.
Args:
* threshold : Threshold.
* damping : Damping coefficient (damping is made through an identity matrix).
Kwargs:
* slipdirection : Which direction to accout for to build the slip Green's functions (s, d or t)
* plot : False/True
* verboseLevel : talk to me
* decimorig : decimate a bit before plotting
* vertical : Use vertical green's functions.
Returns:
* None
'''
if self.verbose:
print ("---------------------------------")
print ("---------------------------------")
print ("Downsampling Iterations")
# Check if vertical is set properly
if not vertical and self.datatype is 'insar':
print("----------------------------------")
print("----------------------------------")
print(" Watch Out!!!!")
print(" We have set vertical to True, because ")
print(" LOS is always very sensitive to vertical")
print(" displacements...")
vertical = True
# Creates the variable that is supposed to stop the loop
# Check = [False]*len(self.blocks)
self.Rd = np.ones(len(self.blocks),)*(threshold+1.)
do_cut = False
# counter
it = 0
# Check if block size is minimum
Bsize = self._is_minimum_size(self.blocks)
# Loops until done
while not (self.Rd<threshold).all():
# Check
assert self.Rd.shape[0]==len(self.blocks), 'Resolution matrix has a size different than number of blocks'
# Cut if asked
if do_cut:
# New list of blocks
newblocks = []
# Iterate over blocks
for j in range(len(self.blocks)):
block = self.blocks[j]
if (self.Rd[j]>threshold) and not Bsize[j]:
b1, b2, b3, b4 = self.cutblockinfour(block)
newblocks.append(b1)
newblocks.append(b2)
newblocks.append(b3)
newblocks.append(b4)
else:
newblocks.append(block)