forked from jolivetr/csi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
insar.py
3003 lines (2404 loc) · 90.5 KB
/
insar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
'''
A class that deals with InSAR data, after decimation using VarRes.
Written by R. Jolivet, B. Riel and Z. Duputel, April 2013.
Edited by T. Shreve, June 2019. Edited buildsynth to include pressure sources.
'''
# Externals
import numpy as np
import pyproj as pp
import matplotlib.pyplot as plt
import matplotlib.path as path
import scipy.spatial.distance as scidis
import copy
import sys, os
# Personals
from .SourceInv import SourceInv
from .geodeticplot import geodeticplot as geoplot
from . import csiutils as utils
class insar(SourceInv):
'''
Args:
* name : Name of the InSAR dataset.
Kwargs:
* utmzone : UTM zone. (optional, default is 10 (Western US))
* lon0 : Longitude of the utmzone
* lat0 : Latitude of the utmzone
* ellps : ellipsoid (optional, default='WGS84')
Returns:
* None
'''
def __init__(self, name, utmzone=None, ellps='WGS84', verbose=True, lon0=None, lat0=None):
# Base class init
super(insar,self).__init__(name,
utmzone=utmzone,
ellps=ellps,
lon0=lon0,
lat0=lat0)
# Initialize the data set
self.dtype = 'insar'
if verbose:
print ("---------------------------------")
print ("---------------------------------")
print ("Initialize InSAR data set {}".format(self.name))
self.verbose = verbose
# Initialize some things
self.vel = None
self.synth = None
self.err = None
self.lon = None
self.lat = None
self.los = None
self.corner = None
self.xycorner = None
self.Cd = None
# All done
return
def mergeInsar(self, sar):
'''
Combine the existing data set with another insar object.
Args:
* sar : Instance of the insar class
Returns:
* None
'''
# Assert we have the same geographic transformation
assert self.utmzone==sar.utmzone, 'Objects do not have the same \
geographic transform'
assert self.lon0==sar.lon0, 'Objects do not have the same \
geographic transform'
assert self.lat0==sar.lat0, 'Objects do not have the same \
geographic transform'
# Assert everything exists
if self.err is None:
self.err = np.array([])
if self.vel is None:
self.vel = np.array([])
if self.lat is None:
self.lat = np.array([])
if self.lon is None:
self.lon = np.array([])
if self.los is None:
self.los = np.array([])
# Assert everything exists in the slave
assert sar.vel is not None, 'Nothing to merge in...'
# Add things
self.err = np.array(self.err.tolist()+sar.err.tolist())
self.vel = np.array(self.vel.tolist()+sar.vel.tolist())
self.lat = np.array(self.lat.tolist()+sar.lat.tolist())
self.lon = np.array(self.lon.tolist()+sar.lon.tolist())
self.los = np.array(self.los.tolist()+sar.los.tolist())
# Convert to xy
self.x, self.y = self.ll2xy(self.lon, self.lat)
# All done
return
def checkZeros(self):
'''
Checks and remove data points that have Zeros in vel, lon or lat
'''
# Check
if self.vel is not None:
uVel = np.flatnonzero(self.vel==0.)
else:
uVel = np.array([])
# Reject pixels
self.reject_pixel(uVel)
# All done
return
def checkNaNs(self):
'''
Checks and remove data points that have NaNs in vel, err, lon, lat or los.
'''
# Check
if self.vel is not None:
uVel = np.flatnonzero(np.isnan(self.vel))
else:
uVel = np.array([])
if self.err is not None:
uErr = np.flatnonzero(np.isnan(self.err))
else:
uErr = np.array([])
if self.lon is not None:
uLon = np.flatnonzero(np.isnan(self.lon))
else:
uLon = np.array([])
if self.lat is not None:
uLat = np.flatnonzero(np.isnan(self.lat))
else:
uLat = np.array([])
if self.los is not None:
uLos, toto = np.where(np.isnan(self.los))
uLos = np.unique(uLos.flatten())
else:
uLos = np.array([])
# Concatenate all these guys
uRemove = np.concatenate((uVel, uErr, uLon, uLat, uLos))
# Reject pixels
self.reject_pixel(uRemove)
# All done
return
def read_from_ascii_simple(self, filename, factor=1.0, step=0.0, header=0, los=None):
'''
Read the InSAR data from an ascii file with 3 cols.
Args:
* filename : Name of the input file (format is Lon, Lat. data)
Kwargs:
* factor : Factor to multiply the LOS velocity.
* step : Add a value to the velocity.
* header : Size of the header.
* los : LOS unit vector (3 column array)
Returns:
* None
'''
# Open the file
fin = open(filename, 'r')
# Read it all
Lines = fin.readlines()
fin.close()
# Initialize the business
self.vel = []
self.err = []
self.lon = []
self.lat = []
# Loop over yje lines
for i in range(len(Lines)):
# Get values
line = Lines[i].split()
# Fill in the values
self.lon.append(np.float(line[0]))
self.lat.append(np.float(line[1]))
self.vel.append(np.float(line[2]))
if len(line)>3:
self.err.append(np.float(line[3]))
else:
self.err.append(0.0)
# Make arrays
self.vel = (np.array(self.vel)+step)*factor
self.err = np.array(self.err)*factor
self.lon = np.array(self.lon)
self.lat = np.array(self.lat)
# set lon to (0, 360.)
self._checkLongitude()
# Compute lon lat to utm
self.x, self.y = self.ll2xy(self.lon,self.lat)
# store the factor
self.factor = factor
# LOS
if los is not None:
self.los = []
fin = open(los, 'r')
Lines = fin.readlines()
fin.close()
for line in Lines:
line = line.split()
self.los.append([float(line[0]), float(line[1]), float(line[2])])
self.los = np.array(self.los)
else:
self.los = None
# All done
return
def read_from_ascii(self, filename, factor=1.0, step=0.0, header=0):
'''
Read the InSAR data from an ascii file.
Args:
* filename : Name of the input file. Format is Lon, Lat, data, uncertainty, los E, los N, los U.
Kwargs:
* factor : Factor to multiply the LOS velocity.
* step : Add a value to the velocity.
* header : Size of the header.
Returns:
* None
'''
# Open the file
fin = open(filename, 'r')
# Read it all
Lines = fin.readlines()
fin.close()
# Initialize the business
self.vel = []
self.lon = []
self.lat = []
self.err = []
self.los = []
self.corner = []
# Loop over yje lines
for i in range(header,len(Lines)):
# Get values
line = Lines[i].split()
# Fill in the values
self.lon.append(np.float(line[0]))
self.lat.append(np.float(line[1]))
self.vel.append(np.float(line[2]))
self.err.append(np.float(line[3]))
self.los.append([np.float(line[4]), np.float(line[5]), np.float(line[6])])
# Make arrays
self.vel = (np.array(self.vel)+step)*factor
self.lon = np.array(self.lon)
self.lat = np.array(self.lat)
self.err = np.array(self.err)*factor
self.los = np.array(self.los)
# set lon to (0, 360.)
self._checkLongitude()
# Compute lon lat to utm
self.x, self.y = self.ll2xy(self.lon,self.lat)
# store the factor
self.factor = factor
# All done
return
def read_from_varres(self,filename, factor=1.0, step=0.0, header=2, cov=False):
'''
Read the InSAR LOS rates from the VarRes output.
Args:
* filename : Name of the input file. Two files are opened filename.txt and filename.rsp.
Kwargs:
* factor : Factor to multiply the LOS velocity.
* step : Add a value to the velocity.
* header : Size of the header.
* cov : Read an additional covariance file (binary float32, Nd*Nd elements).
Returns:
* None
'''
if self.verbose:
print ("Read from file {} into data set {}".format(filename, self.name))
# Open the file
fin = open(filename+'.txt','r')
fsp = open(filename+'.rsp','r')
# Read it all
A = fin.readlines()
B = fsp.readlines()
# Initialize the business
self.vel = []
self.lon = []
self.lat = []
self.err = []
self.los = []
self.corner = []
# Loop over the A, there is a header line header
for i in range(header, len(A)):
tmp = A[i].split()
self.vel.append(np.float(tmp[5]))
self.lon.append(np.float(tmp[3]))
self.lat.append(np.float(tmp[4]))
self.err.append(np.float(tmp[6]))
self.los.append([np.float(tmp[8]), np.float(tmp[9]), np.float(tmp[10])])
tmp = B[i].split()
self.corner.append([np.float(tmp[6]), np.float(tmp[7]), np.float(tmp[8]), np.float(tmp[9])])
# Make arrays
self.vel = (np.array(self.vel)+step)*factor
self.lon = np.array(self.lon)
self.lat = np.array(self.lat)
self.err = np.array(self.err)*np.abs(factor)
self.los = np.array(self.los)
self.corner = np.array(self.corner)
# Close file
fin.close()
fsp.close()
# set lon to (0, 360.)
#self._checkLongitude()
# Compute lon lat to utm
self.x, self.y = self.ll2xy(self.lon,self.lat)
# Compute corner to xy
self.xycorner = np.zeros(self.corner.shape)
x, y = self.ll2xy(self.corner[:,0], self.corner[:,1])
self.xycorner[:,0] = x
self.xycorner[:,1] = y
x, y = self.ll2xy(self.corner[:,2], self.corner[:,3])
self.xycorner[:,2] = x
self.xycorner[:,3] = y
# Read the covariance
if cov:
nd = self.vel.size
self.Cd = np.fromfile(filename+'.cov', dtype=np.float32).reshape((nd, nd))*factor*factor
# Store the factor
self.factor = factor
# All done
return
def read_from_binary(self, data, lon, lat, err=None, factor=1.0,
step=0.0, incidence=None, heading=None, azimuth=None, los=None,
dtype=np.float32, remove_nan=True, downsample=1,
remove_zeros=True):
'''
Read from binary file or from array.
Args:
* data : binary array containing the data or binary file
* lon : binary arrau containing the longitude or binary file
* lat : binary array containing the latitude or binary file
Kwargs:
* err : Uncertainty (array)
* factor : multiplication factor (default is 1.0)
* step : constant added to the data (default is 0.0)
* incidence : incidence angle (degree)
* heading : heading angle (degree)
* azimuth : Azimuth angle (degree)
* los : LOS unit vector 3 component array (3-column array)
* dtype : data type (default is np.float32 if data is a file)
* remove_nan : True/False
* downsample : default is 1 (take one pixel out of those)
* remove_zeros : True/False
Return:
* None
'''
# Get the data
if type(data) is str:
vel = np.fromfile(data, dtype=dtype)[::downsample]*factor + step
else:
vel = data.flatten()[::downsample]*factor + step
# Get the lon
if type(lon) is str:
lon = np.fromfile(lon, dtype=dtype)[::downsample]
else:
lon = lon[::downsample]
# Get the lat
if type(lat) is str:
lat = np.fromfile(lat, dtype=dtype)[::downsample]
else:
lat = lat[::downsample]
# Check sizes
assert vel.shape==lon.shape, 'Something wrong with the sizes: {} {} {} '.format(vel.shape, lon.shape, lat.shape)
assert vel.shape==lat.shape, 'Something wrong with the sizes: {} {} {} '.format(vel.shape, lon.shape, lat.shape)
# Get the error
if err is not None:
if type(err) is str:
err = np.fromfile(err, dtype=dtype)[::downsample]
err = err * np.abs(factor)
assert vel.shape==err.shape, 'Something wrong with the sizes: {} {} {} '.format(vel.shape, lon.shape, lat.shape)
# If zeros
if remove_zeros:
iZeros = np.flatnonzero(np.logical_or(vel!=0.,
lon!=0.,
lat!=0.))
else:
iZeros = range(len(vel))
# Check NaNs
if remove_nan:
iFinite = np.flatnonzero(np.isfinite(vel))
else:
iFinite = range(len(vel))
# Compute the LOS
if heading is not None:
if type(incidence) is np.ndarray:
self.inchd2los(incidence, heading, origin='binaryfloat')
self.los = self.los[::downsample,:]
elif type(incidence) in (float, np.float):
self.inchd2los(incidence, heading, origin='float')
elif type(incidence) is str:
self.inchd2los(incidence, heading, origin='binary')
self.los = self.los[::downsample,:]
elif azimuth is not None:
if type(incidence) is np.ndarray:
self.incaz2los(incidence, azimuth, origin='binaryfloat',
dtype=dtype)
self.los = self.los[::downsample,:]
elif type(incidence) in (float, np.float):
self.incaz2los(incidence, azimuth, origin='float')
elif type(incidence) is str:
self.incaz2los(incidence, azimuth, origin='binary',
dtype=dtype)
self.los = self.los[::downsample,:]
elif los is not None:
if type(los) is np.ndarray:
self.los = los[::downsample,:]
elif type(los) is str:
self.los = np.fromfile(los, 'f').reshape((len(vel), 3))
else:
self.los = None
# Who to keep
iKeep = np.intersect1d(iZeros, iFinite)
# Remove unwanted pixels
vel = vel[iKeep]
if err is not None:
err = err[iKeep]
lon = lon[iKeep]
lat = lat[iKeep]
if self.los is not None:
self.los = self.los[iKeep,:]
# Set things in self
self.vel = vel
if err is not None:
self.err = err
else:
self.err = None
self.lon = lon
self.lat = lat
# Keep track of factor
self.factor = factor
# set lon to (0, 360.)
self._checkLongitude()
# compute x, y
self.x, self.y = self.ll2xy(self.lon, self.lat)
# All done
return
def read_from_mat(self, filename, factor=1.0, step=0.0, incidence=35.88, heading=-13.115):
'''
Reads velocity map from a mat file.
Args:
* filename : Name of the input matlab file
Kwargs:
* factor : scale by a factor.
* step : add a step.
* incidence : incidence angle (degree)
* heading : heading angle (degree)
Returns:
* None
'''
# Initialize values
self.vel = []
self.lon = []
self.lat = []
self.err = []
self.los = []
# Open the input file
import scipy.io as scio
A = scio.loadmat(filename)
# Get the phase values
self.vel = (A['velo'].flatten()+ step)*factor
self.err = A['verr'].flatten()
self.err[np.where(np.isnan(self.vel))] = np.nan
self.vel[np.where(np.isnan(self.err))] = np.nan
# Deal with lon/lat
Lon = A['posx'].flatten()
Lat = A['posy'].flatten()
Lon,Lat = np.meshgrid(Lon,Lat)
w,l = Lon.shape
self.lon = Lon.reshape((w*l,)).flatten()
self.lat = Lat.reshape((w*l,)).flatten()
# Keep the non-nan pixels
u = np.flatnonzero(np.isfinite(self.vel))
self.lon = self.lon[u]
self.lat = self.lat[u]
self.vel = self.vel[u]
self.err = self.err[u]
# set lon to (0, 360.)
self._checkLongitude()
# Convert to utm
self.x, self.y = self.ll2xy(self.lon, self.lat)
# Deal with the LOS
self.inchd2los(incidence, heading)
# Store the factor
self.factor = factor
# All done
return
def incaz2los(self, incidence, azimuth, origin='onefloat', dtype=np.float32):
'''
From the incidence and the heading, defines the LOS vector.
Args:
* incidence : Incidence angle.
* azimuth : Azimuth angle of the LOS
Kwargs:
* origin : What are these numbers
- onefloat : One number
- grd : grd files
- binary : Binary files
- binaryfloat : Arrays of float
* dtype : Data type (default is np.float32)
Returns:
* None
'''
# Save values
self.incidence = incidence
self.azimuth = azimuth
# Read the files if needed
if origin in ('grd', 'GRD'):
try:
from netCDF4 import Dataset as netcdf
fincidence = netcdf(incidence, 'r', format='NETCDF4')
fazimuth = netcdf(azimuth, 'r', format='NETCDF4')
except:
import scipy.io.netcdf as netcdf
fincidence = netcdf.netcdf_file(incidence)
fazimuth = netcdf.netcdf_file(azimuth)
incidence = np.array(fincidence.variables['z'][:]).flatten()
azimuth = np.array(fazimuth.variables['z'][:]).flatten()
self.origininchd = origin
elif origin in ('binary', 'bin'):
incidence = np.fromfile(incidence, dtype=dtype)
azimuth = np.fromfile(azimuth, dtype=dtype)
self.origininchd = origin
elif origin in ('binaryfloat'):
self.origininchd = origin
self.Incidence = incidence
self.Azimuth = azimuth
# Convert angles
alpha = -1.0*azimuth*np.pi/180.
phi = incidence*np.pi/180.
# Compute LOS
Se = np.sin(alpha) * np.sin(phi)
Sn = np.cos(alpha) * np.sin(phi)
Su = np.cos(phi)
# Store it
if origin in ('grd', 'GRD', 'binary', 'bin', 'binaryfloat'):
self.los = np.ones((alpha.shape[0],3))
else:
self.los = np.ones((self.lon.shape[0],3))
self.los[:,0] *= Se
self.los[:,1] *= Sn
self.los[:,2] *= Su
# all done
return
def inchd2los(self, incidence, heading, origin='onefloat'):
'''
From the incidence and the heading, defines the LOS vector.
Args:
* incidence : Incidence angle.
* heading : Heading angle.
Kwargs:
* origin : What are these numbers
- onefloat : One number
- grd : grd files
- binary : Binary files
- binaryfloat : Arrays of float
Returns:
* None
'''
# Save values
self.incidence = incidence
self.heading = heading
# Read the files if needed
if origin in ('grd', 'GRD'):
try:
from netCDF4 import Dataset as netcdf
fincidence = netcdf(incidence, 'r', format='NETCDF4')
fheading = netcdf(heading, 'r', format='NETCDF4')
except:
import scipy.io.netcdf as netcdf
fincidence = netcdf.netcdf_file(incidence)
fheading = netcdf.netcdf_file(heading)
incidence = np.array(fincidence.variables['z'][:]).flatten()
heading = np.array(fheading.variables['z'][:]).flatten()
self.origininchd = origin
elif origin in ('binary', 'bin'):
incidence = np.fromfile(incidence, dtype=np.float32)
heading = np.fromfile(heading, dtype=np.float32)
self.origininchd = origin
elif origin in ('binaryfloat'):
self.origininchd = origin
self.Incidence = incidence
self.Heading = heading
# Convert angles
alpha = (heading+90.)*np.pi/180.
phi = incidence *np.pi/180.
# Compute LOS
Se = -1.0 * np.sin(alpha) * np.sin(phi)
Sn = -1.0 * np.cos(alpha) * np.sin(phi)
Su = np.cos(phi)
# Store it
if origin in ('grd', 'GRD', 'binary', 'bin', 'binaryfloat'):
self.los = np.ones((alpha.shape[0],3))
else:
self.los = np.ones((self.lon.shape[0],3))
self.los[:,0] *= Se
self.los[:,1] *= Sn
self.los[:,2] *= Su
# all done
return
def read_from_grd(self, filename, factor=1.0, step=0.0, incidence=None, heading=None,
los=None, keepnans=False):
'''
Reads velocity map from a grd file.
Args:
* filename : Name of the input file
Kwargs:
* factor : scale by a factor
* step : add a value.
* incidence : incidence angle (degree)
* heading : heading angle (degree)
* los : LOS unit vector (3 column array)
* keepnans : True/False
Returns:
* None
'''
print ("Read from file {} into data set {}".format(filename, self.name))
# Initialize values
self.vel = []
self.lon = []
self.lat = []
self.err = []
self.los = []
# Open the input file
try:
from netCDF4 import Dataset as netcdf
fin = netcdf(filename, 'r', format='NETCDF4')
except ImportError:
import scipy.io.netcdf as netcdf
fin = netcdf.netcdf_file(filename)
# Get the values
if len(fin.variables['z'].shape)==1:
self.vel = (np.array(fin.variables['z'][:]) + step) * factor
else:
self.vel = (np.array(fin.variables['z'][:,:]).flatten() + step)*factor
self.err = np.zeros((self.vel.shape))
self.err[np.where(np.isnan(self.vel))] = np.nan
self.vel[np.where(np.isnan(self.err))] = np.nan
# Deal with lon/lat
if 'x' in fin.variables.keys():
Lon = fin.variables['x'][:]
Lat = fin.variables['y'][:]
elif 'lon' in fin.variables.keys():
Lon = fin.variables['lon'][:]
Lat = fin.variables['lat'][:]
else:
Nlon, Nlat = fin.variables['dimension'][:]
Lon = np.linspace(fin.variables['x_range'][0], fin.variables['x_range'][1], Nlon)
Lat = np.linspace(fin.variables['y_range'][1], fin.variables['y_range'][0], Nlat)
self.lonarr = Lon.copy()
self.latarr = Lat.copy()
Lon, Lat = np.meshgrid(Lon,Lat)
w, l = Lon.shape
self.lon = Lon.reshape((w*l,)).flatten()
self.lat = Lat.reshape((w*l,)).flatten()
self.grd_shape = Lon.shape
# Keep the non-nan pixels only
if not keepnans:
u = np.flatnonzero(np.isfinite(self.vel))
self.lon = self.lon[u]
self.lat = self.lat[u]
self.vel = self.vel[u]
self.err = self.err[u]
# set lon to (0, 360.)
self._checkLongitude()
# Convert to utm
self.x, self.y = self.ll2xy(self.lon, self.lat)
# Deal with the LOS
if heading is not None and incidence is not None and los is None:
if type(heading) is str:
ori = 'grd'
else:
ori = 'float'
self.inchd2los(incidence, heading, origin=ori)
if not keepnans and self.los.shape[0]!=self.lon.shape[0]:
self.los = self.los[u,:]
elif los is not None:
# If strings, they are meant to be grd files
if type(los[0]) is str:
if los[0][-4:] not in ('.grd'):
print('LOS input files do not seem to be grds as the displacement file')
print('There might be some issues...')
print(' Input files: {}, {} and {}'.format(los[0], los[1], los[2]))
try:
from netCDF4 import Dataset
finx = Dataset(los[0], 'r', format='NETCDF4')
finy = Dataset(los[1], 'r', format='NETCDF4')
finz = Dataset(los[2], 'r', format='NETCDF4')
except ImportError:
import scipy.io.netcdf as netcdf
finx = netcdf.netcdf_file(los[0])
finy = netcdf.netcdf_file(los[1])
finz = netcdf.netcdf_file(los[2])
losx = np.array(finx.variables['z'][:,:]).flatten()
losy = np.array(finy.variables['z'][:,:]).flatten()
losz = np.array(finz.variables['z'][:,:]).flatten()
# Remove NaNs?
if not keepnans:
losx = losx[u]
losy = losy[u]
losz = losz[u]
# Do as if binary
losList = [losx, losy, losz]
# Store these guys
self.los = np.zeros((len(losx),3))
self.los[:,0] = losx
self.los[:,1] = losy
self.los[:,2] = losz
else:
print('Warning: not enough information to compute LOS')
print('LOS will be set to 1,0,0')
self.los = np.zeros((len(self.vel),3))
self.los[:,0] = 1.0
self.los[:,1] = 0.0
self.los[:,2] = 0.0
# Store the factor
self.factor = factor
# All done
return
def ModelResolutionDownsampling(self, faults, threshold, damping, startingsize=10., minimumsize=0.5, tolerance=0.1, plot=False):
'''
Downsampling algorythm based on Lohman & Simons, 2005, G3.
Args:
* faults : List of faults, these need to have a buildGFs routine (ex: for RectangularPatches, it will be Okada).
* threshold : Resolution threshold, if above threshold, keep dividing.
* damping : Damping parameter. Damping is enforced through the addition of a identity matrix.
Kwargs:
* startingsize : Starting size of the downsampling boxes.
* minimumsize : Minimum window size (km)
* tolerance : Tolerance on the window size calculation
* plot : True/False
Returns:
* None
'''
# If needed
from .imagedownsampling import imagedownsampling
# Check if faults have patches and builGFs routine
for fault in faults:
assert (hasattr(fault, 'builGFs')), 'Fault object {} does not have a buildGFs attribute...'.format(fault.name)
# Create the insar downsampling object
downsampler = imagedownsampling('Downsampler {}'.format(self.name), self, faults)
# Initialize the downsampling starting point
downsampler.initialstate(startingsize, minimumsize, tolerance=tolerance)
# Iterate until done
downsampler.ResolutionBasedIterations(threshold, damping, plot=False)
# Plot
if plot:
downsampler.plot()
# Write outputs
downsampler.writeDownsampled2File(self.name, rsp=True)
# All done
return
def buildDiagCd(self):
'''
Builds a full Covariance matrix from the uncertainties. The Matrix is just a diagonal matrix.
'''
# Assert
assert self.err is not None, 'Need some uncertainties on the LOS displacements...'
# Get some size
nd = self.vel.shape[0]
# Fill Cd
self.Cd = np.diag(self.err**2)
# All done
return
def buildCd(self, sigma, lam, function='exp', diagonalVar=False,
normalizebystd=False):
'''
Builds the full Covariance matrix from values of sigma and lambda.
If function='exp':
:math:`C_d(i,j) = \sigma^2 e^{-\\frac{d[i,j]}{\lambda}}`
elif function='gauss':
:math:`C_d(i,j) = \sigma^2 e^{-\\frac{d_{i,j}^2}{2*\lambda}}`
Args:
* sigma : Sigma term of the covariance
* lam : Caracteristic length of the covariance
Kwargs:
* function : Can be 'gauss' or 'exp'
* diagonalVar : Substitute the diagonal by the standard deviation of the measurement squared
* normalizebystd : Weird option to normalize the covariance matrix by the std deviation
Returns:
* None
'''
# Assert
assert function in ('exp', 'gauss'), \
'Unknown functional form for Covariance matrix'
# Check something
if normalizebystd:
diagonalVar = True
# Get some size
nd = self.vel.shape[0]
# positions
x = self.x
y = self.y
distance = np.sqrt( (x[:,None] - x[None,:])**2 + (y[:,None] - y[None,:])**2)
# Compute Cd
if function is 'exp':
self.Cd = sigma*sigma*np.exp(-1.0*distance/lam)
elif function is 'gauss':
self.Cd = sigma*sigma*np.exp(-1.0*distance*distance/(2*lam))
# Normalize
if normalizebystd:
for i in range(nd):
for j in range(i,nd):
self.Cd[j,i] *= self.err[j]*self.err[i]/(sigma*sigma)
self.Cd[i,j] *= self.err[j]*self.err[i]/(sigma*sigma)
# Substitute variance?
if diagonalVar:
for i in range(nd):
self.Cd[i,i] = self.err[i]**2
# All done
return
def distancePixel2Pixel(self, i, j):
'''
Returns the distance in km between two pixels.
Args:
* i : index of a pixel
* h : index of a pixel
Returns:
* float
'''
# Get values
x1 = self.x[i]
y1 = self.y[i]
x2 = self.x[j]
y2 = self.y[j]