forked from tsinghua-fib-lab/ResInf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
engine_real.py
191 lines (116 loc) · 5.9 KB
/
engine_real.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import os
import torch
import torch.nn.functional as F
from prettytable import PrettyTable
import numpy as np
import random
from sklearn import metrics
import wandb
from tqdm import tqdm
from utils import *
def normalized_laplacian(A):
"""
Input A: np.ndarray
:return: np.ndarray D^-1/2 * ( D - A ) * D^-1/2 = I - D^-1/2 * ( A ) * D^-1/2
"""
out_degree = np.array(A.sum(1), dtype=np.float32)
int_degree = np.array(A.sum(0), dtype=np.float32)
out_degree_sqrt_inv = np.power(out_degree, -0.5, where=(out_degree != 0))
int_degree_sqrt_inv = np.power(int_degree, -0.5, where=(int_degree != 0))
mx_operator = np.eye(A.shape[0]) - np.diag(out_degree_sqrt_inv) @ A @ np.diag(int_degree_sqrt_inv)
return mx_operator
def process_instance_faketopo(A, numericals, r_truth, args):
if args.gpu >= 0:
device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu')
else:
device = torch.device('cpu')
A = np.array(A)
add0 = np.ones((1, A.shape[0]))
add1 = np.zeros((A.shape[0]+1, 1))
A = np.concatenate((A, add0), axis=0)
A = np.concatenate((A, add1), axis=1)
A = normalized_laplacian(A)
A = torch.from_numpy(A).to(torch.float32).to(device)
numericals = np.array(numericals)
numericals = np.transpose(numericals, (0,2,1))
add_nume = np.mean(numericals, axis=1, keepdims=True)
numericals = np.concatenate((numericals, add_nume), axis=1)
numericals = torch.from_numpy(numericals).to(torch.float32).to(device)
r_truth = torch.from_numpy(np.array(r_truth)).to(torch.float32).to(device)
return A, numericals, r_truth
def train_test_faketopo(model, train_subset, test_subset, train_loader, test_loader, optimizer, criterion, args):
if args.gpu >= 0:
device = torch.device('cuda:' + str(args.gpu) if torch.cuda.is_available() else 'cpu')
else:
device = torch.device('cpu')
if args.use_wandb:
dir = wandb.run.dir
else:
dir = os.path.dirname(os.path.abspath(__file__))
make_model_dirs(dir)
checkpoint_saver = CheckpointSaver(dirpath=os.path.join(dir, 'checkpoints'), decreasing=False, top_n=1, not_save = (args.use_model != 'resinf'))
metric_monitor = MetricMonitor()
for epoch in range(args.epoch):
model.train()
total_loss = 0
for i, (A, numericals, r_truth) in tqdm(enumerate(train_loader), total=len(train_subset) // args.train_size + 1):
A = A.numpy()
A = A.squeeze(0)
numericals = numericals.numpy()
numericals = numericals.squeeze(0)
A, numericals, r_truth = process_instance_faketopo(A, numericals, r_truth, args)
numericals_use = numericals.index_select(0, torch.tensor(random.choices(list(range(numericals.shape[0])), k=args.K)).to(device))
# if args.extra_dim:
r_pred, _, __ = model(numericals_use[:,:,:1+args.hidden], A)
# else:
# r_pred, _, __ = model(numericals_use[:,:,1:1+args.hidden], A)
if not torch.isnan(r_pred):
loss = criterion(r_pred, r_truth)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
total_loss = total_loss / len(train_subset)
print('Total Loss in Epoch {0}:'.format(epoch))
print(total_loss)
if args.use_wandb:
wandb.log({'train_loss': total_loss, "epoch": epoch})
r_pred = min(r_pred + 1e-6, torch.FloatTensor([1]).to(device))
with torch.no_grad():
test_loss = 0
preds = []
truths = []
pred_labels = []
for i, (A, numericals, r_truth) in tqdm(enumerate(test_loader), total=len(test_subset) // args.test_size + 1):
A = A.numpy()
A = A.squeeze(0)
numericals = numericals.numpy()
numericals = numericals.squeeze(0)
A, numericals, r_truth = process_instance_faketopo(A, numericals, r_truth, args)
numericals_use = numericals.index_select(0, torch.tensor(random.choices(list(range(numericals.shape[0])), k=args.K)).to(device))
# if args.extra_dim:
r_pred, _, __ = model(numericals_use[:,:,:1+args.hidden], A)
# else:
# r_pred, _, __ = model(numericals_use[:,:,1:1+args.hidden], A)
r_pred = min(r_pred + 1e-6, torch.FloatTensor([1]).to(device))
if not torch.isnan(r_pred):
loss = criterion(r_pred, r_truth)
test_loss += loss.item()
preds.append(r_pred.item())
truths.append(r_truth.item())
pred_labels.append((r_pred.item() > args.threshold))
test_loss = test_loss / len(test_subset)
my_auc = metrics.roc_auc_score(truths, preds)
my_f1 = metrics.f1_score(truths, pred_labels, average='weighted')
my_acc = metrics.accuracy_score(truths, pred_labels)
my_mcc = metrics.matthews_corrcoef(truths, pred_labels)
checkpoint_saver(model, epoch, my_f1)
metric_monitor.update(my_f1, my_acc, my_mcc, my_auc, epoch)
train_res = PrettyTable()
train_res.field_names = ["Epoch", "Train Loss", "Test Loss", "Accuracy", "AUC", "f1", "mcc", "Positive"]
train_res.add_row([epoch, total_loss, test_loss, my_acc, my_auc, my_f1, my_mcc, sum(truths)/len(truths)])
print(train_res)
if args.use_wandb:
wandb.log({'test_loss': test_loss, "epoch": epoch, "Acc": my_acc, "AUC": my_auc, "F1": my_f1, "Mcc": my_mcc, "positive": sum(truths)/len(truths)})
f1, acc, mcc, auc, epoch = metric_monitor.read()
return [f1, acc, mcc, auc, epoch]